
Reinforcement Learning
Temporal-Difference Learning (RLbook 6)

Christopher Simpkins

Kennesaw State University

1 / 14

Temporal-Difference Learning

▶ DP Review
▶ Dynamic programming
▶ Generalized policy iteration (GPI)

▶ Model-free control
▶ Monte Carlo control
▶ Temporal-difference learning

2 / 14

Dynamic Programming

Dynamic programming algorithms, as well as RL algorithms in general, contain two phases
(combined in value iteration):
▶ Prediction: estimate the value function
▶ Control: computing or approximating optimal policies

86 Chapter 4: Dynamic Programming

that are most relevant to the agent. This kind of focusing is a repeated theme in
reinforcement learning.

4.6 Generalized Policy Iteration

Policy iteration consists of two simultaneous, interacting processes, one making the value
function consistent with the current policy (policy evaluation), and the other making
the policy greedy with respect to the current value function (policy improvement). In
policy iteration, these two processes alternate, each completing before the other begins,
but this is not really necessary. In value iteration, for example, only a single iteration
of policy evaluation is performed in between each policy improvement. In asynchronous
DP methods, the evaluation and improvement processes are interleaved at an even
finer grain. In some cases a single state is updated in one process before returning
to the other. As long as both processes continue to update all states, the ultimate
result is typically the same—convergence to the optimal value function and an optimal
policy.

evaluation

improvement

⇡ � greedy(V)

V⇡

V � v⇡

v⇤⇡⇤

We use the term generalized policy iteration (GPI) to refer
to the general idea of letting policy-evaluation and policy-
improvement processes interact, independent of the granularity
and other details of the two processes. Almost all reinforcement
learning methods are well described as GPI. That is, all have
identifiable policies and value functions, with the policy always
being improved with respect to the value function and the value
function always being driven toward the value function for the
policy, as suggested by the diagram to the right. If both the
evaluation process and the improvement process stabilize, that
is, no longer produce changes, then the value function and policy
must be optimal. The value function stabilizes only when it
is consistent with the current policy, and the policy stabilizes
only when it is greedy with respect to the current value function.
Thus, both processes stabilize only when a policy has been found that is greedy with
respect to its own evaluation function. This implies that the Bellman optimality equation
(4.1) holds, and thus that the policy and the value function are optimal.

The evaluation and improvement processes in GPI can be viewed as both competing
and cooperating. They compete in the sense that they pull in opposing directions. Making
the policy greedy with respect to the value function typically makes the value function
incorrect for the changed policy, and making the value function consistent with the policy
typically causes that policy no longer to be greedy. In the long run, however, these
two processes interact to find a single joint solution: the optimal value function and an
optimal policy.

One might also think of the interaction between the evaluation and improvement
processes in GPI in terms of two constraints or goals—for example, as two lines in

3 / 14

Generalized Policy Iteration

In policy iteration we sweep entire state space in each step.

4.7. E�ciency of Dynamic Programming 87

v⇤, ⇡⇤

⇡ = greed
y(v)

v, ⇡

v = v⇡

a two-dimensional space as suggested by the dia-
gram to the right. Although the real geometry is
much more complicated than this, the diagram sug-
gests what happens in the real case. Each process
drives the value function or policy toward one of
the lines representing a solution to one of the two
goals. The goals interact because the two lines are
not orthogonal. Driving directly toward one goal
causes some movement away from the other goal.
Inevitably, however, the joint process is brought closer to the overall goal of optimality.
The arrows in this diagram correspond to the behavior of policy iteration in that each
takes the system all the way to achieving one of the two goals completely. In GPI
one could also take smaller, incomplete steps toward each goal. In either case, the two
processes together achieve the overall goal of optimality even though neither is attempting
to achieve it directly.

4.7 E�ciency of Dynamic Programming

DP may not be practical for very large problems, but compared with other methods
for solving MDPs, DP methods are actually quite e�cient. If we ignore a few technical
details, then, in the worst case, the time that DP methods take to find an optimal policy
is polynomial in the number of states and actions. If n and k denote the number of states
and actions, this means that a DP method takes a number of computational operations
that is less than some polynomial function of n and k. A DP method is guaranteed to
find an optimal policy in polynomial time even though the total number of (deterministic)
policies is kn. In this sense, DP is exponentially faster than any direct search in policy
space could be, because direct search would have to exhaustively examine each policy
to provide the same guarantee. Linear programming methods can also be used to solve
MDPs, and in some cases their worst-case convergence guarantees are better than those
of DP methods. But linear programming methods become impractical at a much smaller
number of states than do DP methods (by a factor of about 100). For the largest problems,
only DP methods are feasible.

DP is sometimes thought to be of limited applicability because of the curse of dimen-
sionality, the fact that the number of states often grows exponentially with the number
of state variables. Large state sets do create di�culties, but these are inherent di�culties
of the problem, not of DP as a solution method. In fact, DP is comparatively better
suited to handling large state spaces than competing methods such as direct search and
linear programming.

In practice, DP methods can be used with today’s computers to solve MDPs with
millions of states. Both policy iteration and value iteration are widely used, and it is not
clear which, if either, is better in general. In practice, these methods usually converge
much faster than their theoretical worst-case run times, particularly if they are started
with good initial value functions or policies.

In generalized policy iteration (GPI) we interleave prediction and control at arbitrary granularity.
▶ As long as we visit every state, still assured of convergence.

4 / 14

Monte Carlo Control

5.3. Monte Carlo Control 97

to consider only policies that are stochastic with a nonzero probability of selecting all
actions in each state. We discuss two important variants of this approach in later sections.
For now, we retain the assumption of exploring starts and complete the presentation of a
full Monte Carlo control method.

Exercise 5.3 What is the backup diagram for Monte Carlo estimation of q⇡? ⇤

5.3 Monte Carlo Control

We are now ready to consider how Monte Carlo estimation can be used in control, that
is, to approximate optimal policies. The overall idea is to proceed according to the same
pattern as in the DP chapter, that is, according to the idea of generalized policy iteration

evaluation

improvement

⇡ Q

⇡ � greedy(Q)

Q � q⇡

(GPI). In GPI one maintains both an approximate policy and
an approximate value function. The value function is repeatedly
altered to more closely approximate the value function for the
current policy, and the policy is repeatedly improved with respect
to the current value function, as suggested by the diagram to
the right. These two kinds of changes work against each other to
some extent, as each creates a moving target for the other, but
together they cause both policy and value function to approach
optimality.

To begin, let us consider a Monte Carlo version of classical policy iteration. In
this method, we perform alternating complete steps of policy evaluation and policy
improvement, beginning with an arbitrary policy �0 and ending with the optimal policy
and optimal action-value function:

�0
E⇡⇤ q⇡0

I⇡⇤ �1
E⇡⇤ q⇡1

I⇡⇤ �2
E⇡⇤ · · · I⇡⇤ �0

E⇡⇤ q0,

where
E⇡⇤ denotes a complete policy evaluation and

I⇡⇤ denotes a complete policy
improvement. Policy evaluation is done exactly as described in the preceding section.
Many episodes are experienced, with the approximate action-value function approaching
the true function asymptotically. For the moment, let us assume that we do indeed
observe an infinite number of episodes and that, in addition, the episodes are generated
with exploring starts. Under these assumptions, the Monte Carlo methods will compute
each q⇡k

exactly, for arbitrary �k.

Policy improvement is done by making the policy greedy with respect to the current
value function. In this case we have an action-value function, and therefore no model is
needed to construct the greedy policy. For any action-value function q, the corresponding
greedy policy is the one that, for each s / S, deterministically chooses an action with
maximal action-value:

�(s)
.
= arg max

a
q(s, a). (5.1)

Policy improvement then can be done by constructing each �k+1 as the greedy policy
with respect to q⇡k

. The policy improvement theorem (Section 4.2) then applies to �k

5.1. Monte Carlo Prediction 95

at the terminal state, as shown to the right. Whereas the DP diagram (page 59)
shows all possible transitions, the Monte Carlo diagram shows only those sampled
on the one episode. Whereas the DP diagram includes only one-step transitions,
the Monte Carlo diagram goes all the way to the end of the episode. These
di�erences in the diagrams accurately reflect the fundamental di�erences between
the algorithms.

An important fact about Monte Carlo methods is that the estimates for each
state are independent. The estimate for one state does not build upon the estimate
of any other state, as is the case in DP. In other words, Monte Carlo methods do
not bootstrap as we defined it in the previous chapter.

In particular, note that the computational expense of estimating the value of
a single state is independent of the number of states. This can make Monte Carlo
methods particularly attractive when one requires the value of only one or a subset
of states. One can generate many sample episodes starting from the states of interest,
averaging returns from only these states, ignoring all others. This is a third advantage
Monte Carlo methods can have over DP methods (after the ability to learn from actual
experience and from simulated experience).

A bubble on a wire loop.

From Hersh and Griego (1969). Reproduced with
permission. ©1969 Scientific American, a divi-
sion of Nature America, Inc. All rights reserved.

Example 5.2: Soap Bubble Suppose a wire
frame forming a closed loop is dunked in soapy
water to form a soap surface or bubble conform-
ing at its edges to the wire frame. If the geom-
etry of the wire frame is irregular but known,
how can you compute the shape of the surface?
The shape has the property that the total force
on each point exerted by neighboring points is
zero (or else the shape would change). This
means that the surface’s height at any point is
the average of its heights at points in a small
circle around that point. In addition, the sur-
face must meet at its boundaries with the wire
frame. The usual approach to problems of this
kind is to put a grid over the area covered by
the surface and solve for its height at the grid points by an iterative computation. Grid
points at the boundary are forced to the wire frame, and all others are adjusted toward
the average of the heights of their four nearest neighbors. This process then iterates, much
like DP’s iterative policy evaluation, and ultimately converges to a close approximation
to the desired surface.

This is similar to the kind of problem for which Monte Carlo methods were originally
designed. Instead of the iterative computation described above, imagine standing on the
surface and taking a random walk, stepping randomly from grid point to neighboring
grid point, with equal probability, until you reach the boundary. It turns out that the
expected value of the height at the boundary is a close approximation to the height of
the desired surface at the starting point (in fact, it is exactly the value computed by the
iterative method described above). Thus, one can closely approximate the height of the

5 / 14

Temporal-Difference Learning

Combination of dynamic programming and Monte Carlo ideas.
▶ Like Monte Carlo, learn directly from experience without a model of the environment.
▶ Like dynamic programming, update estimates based in part on other learned estimates, without

waiting for a final outcome (bootstrap).

6 / 14

TD Prediction

Use experience following a policy to update estimate of V , namely vpi.
Monte Carlo methods wait until the return following the visit is known, then use that return as a
target for V (St):

V (St)← V (St) + α [Gt − V (St)] (6.1)

TD methods only until the next time step. At time t + 1 they immediately form a target and make a
useful update using the observed reward Rt+1 and the estimate V (St+1)
A simple TD method makes the update:

V (St)← V (St) + α [Rt+1 + V (St+1)− γV (St)]

immediate on transition to St+1 and receiving Rt+1.
▶ Target for Monte Carlo update is Gt.
▶ Target for TD update is Rt+1 + γV (St+1)

7 / 14

Tabular TD(0) Algorithm

One-step TD is called TD(0), which is a special case of TD(λ) and n-step methods.

120 Chapter 6: Temporal-Di�erence Learning

where Gt is the actual return following time t, and � is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-� MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V (St) (only then is
Gt known), TD methods need to wait only until the next time step. At time t + 1 they
immediately form a target and make a useful update using the observed reward Rt+1 and
the estimate V (St+1). The simplest TD method makes the update

V (St)⇡ V (St) + �
P
Rt+1 + �V (St+1)⇤ V (St)

h
(6.2)

immediately on transition to St+1 and receiving Rt+1. In e�ect, the target for the Monte
Carlo update is Gt, whereas the target for the TD update is Rt+1 + �V (St+1). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(�) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy " to be evaluated
Algorithm parameter: step size � / (0, 1]
Initialize V (s), for all s / S+, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A⇡ action given by " for S
Take action A, observe R, S0

V (S)⇡ V (S) + �
�
R + �V (S0)⇤ V (S)

�

S ⇡ S0

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.9))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
v⇡(St+1) is not known and the current estimate, V (St+1), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of

8 / 14

TD Error

Recall TD update:

V (St)← V (St) + α [Rt+1 + V (St+1)− γV (St)]

The quantity in brackets is called TD error – the difference in the
estimate value of S at time t and t + 1:

δ
.= Rt+1 + V (St+1)− γV (St)

6.1. TD Prediction 121

Monte Carlo with the bootstrapping of DP. As we shall see, with care and imagination
this can take us a long way toward obtaining the advantages of both Monte Carlo and
DP methods.

TD(0)

Shown to the right is the backup diagram for tabular TD(0). The value
estimate for the state node at the top of the backup diagram is updated on
the basis of the one sample transition from it to the immediately following
state. We refer to TD and Monte Carlo updates as sample updates because
they involve looking ahead to a sample successor state (or state–action pair),
using the value of the successor and the reward along the way to compute a
backed-up value, and then updating the value of the original state (or state–
action pair) accordingly. Sample updates di�er from the expected updates
of DP methods in that they are based on a single sample successor rather than on a
complete distribution of all possible successors.

Finally, note that the quantity in brackets in the TD(0) update is a sort of error,
measuring the di�erence between the estimated value of St and the better estimate
Rt+1 + �V (St+1). This quantity, called the TD error, arises in various forms throughout
reinforcement learning:

�t
.
= Rt+1 + �V (St+1)⇡ V (St). (6.5)

Notice that the TD error at each time is the error in the estimate made at that time.
Because the TD error depends on the next state and next reward, it is not actually
available until one time step later. That is, �t is the error in V (St), available at time
t + 1. Also note that if the array V does not change during the episode (as it does not in
Monte Carlo methods), then the Monte Carlo error can be written as a sum of TD errors:

Gt ⇡ V (St) = Rt+1 + �Gt+1 ⇡ V (St) + �V (St+1)⇡ �V (St+1) (from (3.9))

= �t + �
P
Gt+1 ⇡ V (St+1)

h

= �t + ��t+1 + �2
P
Gt+2 ⇡ V (St+2)

h

= �t + ��t+1 + �2�t+2 + · · · + �T0t01�T01 + �T0t
P
GT ⇡ V (ST)

h

= �t + ��t+1 + �2�t+2 + · · · + �T0t01�T01 + �T0t
P
0⇡ 0

h

=

T01�

k=t

�k0t�k. (6.6)

This identity is not exact if V is updated during the episode (as it is in TD(0)), but if the
step size is small then it may still hold approximately. Generalizations of this identity
play an important role in the theory and algorithms of temporal-di�erence learning.

Exercise 6.1 If V changes during the episode, then (6.6) only holds approximately; what
would the di�erence be between the two sides? Let Vt denote the array of state values
used at time t in the TD error (6.5) and in the TD update (6.2). Redo the derivation
above to determine the additional amount that must be added to the sum of TD errors
in order to equal the Monte Carlo error. ⇤

9 / 14

Sarsa: On-policy TD Control

6.4. Sarsa: On-policy TD Control 129

6.4 Sarsa: On-policy TD Control

We turn now to the use of TD prediction methods for the control problem. As usual, we
follow the pattern of generalized policy iteration (GPI), only this time using TD methods
for the evaluation or prediction part. As with Monte Carlo methods, we face the need to
trade o� exploration and exploitation, and again approaches fall into two main classes:
on-policy and o�-policy. In this section we present an on-policy TD control method.

The first step is to learn an action-value function rather than a state-value function.
In particular, for an on-policy method we must estimate q⇡(s, a) for the current behavior
policy � and for all states s and actions a. This can be done using essentially the same TD
method described above for learning v⇡. Recall that an episode consists of an alternating
sequence of states and state–action pairs:

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3.

In the previous section we considered transitions from state to state and learned the
values of states. Now we consider transitions from state–action pair to state–action pair,
and learn the values of state–action pairs. Formally these cases are identical: they are
both Markov chains with a reward process. The theorems assuring the convergence of
state values under TD(0) also apply to the corresponding algorithm for action values:

Q(St, At)⇡ Q(St, At) + �
P
Rt+1 + �Q(St+1, At+1)⇤Q(St, At)

h
. (6.7)

Sarsa

This update is done after every transition from a nonterminal state St. If
St+1 is terminal, then Q(St+1, At+1) is defined as zero. This rule uses every
element of the quintuple of events, (St, At, Rt+1, St+1, At+1), that make up a
transition from one state–action pair to the next. This quintuple gives rise to
the name Sarsa for the algorithm. The backup diagram for Sarsa is as shown
to the right.

It is straightforward to design an on-policy control algorithm based on the Sarsa
prediction method. As in all on-policy methods, we continually estimate q⇡ for the
behavior policy �, and at the same time change � toward greediness with respect to q⇡.
The general form of the Sarsa control algorithm is given in the box on the next page.

The convergence properties of the Sarsa algorithm depend on the nature of the policy’s
dependence on Q. For example, one could use "-greedy or "-soft policies. Sarsa converges
with probability 1 to an optimal policy and action-value function, under the usual
conditions on the step sizes (2.7), as long as all state–action pairs are visited an infinite
number of times and the policy converges in the limit to the greedy policy (which can be
arranged, for example, with "-greedy policies by setting " = 1/t).

Exercise 6.8 Show that an action-value version of (6.6) holds for the action-value form
of the TD error ↵t = Rt+1 + �Q(St+1, At+1)⇤Q(St, At), again assuming that the values
don’t change from step to step. ⇤

Sarsa update:

Q(st, at)← Q(st, at) + α [Rt+1 + γQ(st+1, at+1)−Q(St, At)]

6.4. Sarsa: On-policy TD Control 129

6.4 Sarsa: On-policy TD Control

We turn now to the use of TD prediction methods for the control problem. As usual, we
follow the pattern of generalized policy iteration (GPI), only this time using TD methods
for the evaluation or prediction part. As with Monte Carlo methods, we face the need to
trade o� exploration and exploitation, and again approaches fall into two main classes:
on-policy and o�-policy. In this section we present an on-policy TD control method.

The first step is to learn an action-value function rather than a state-value function.
In particular, for an on-policy method we must estimate q⇡(s, a) for the current behavior
policy � and for all states s and actions a. This can be done using essentially the same TD
method described above for learning v⇡. Recall that an episode consists of an alternating
sequence of states and state–action pairs:

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3.

In the previous section we considered transitions from state to state and learned the
values of states. Now we consider transitions from state–action pair to state–action pair,
and learn the values of state–action pairs. Formally these cases are identical: they are
both Markov chains with a reward process. The theorems assuring the convergence of
state values under TD(0) also apply to the corresponding algorithm for action values:

Q(St, At)⇡ Q(St, At) + �
P
Rt+1 + �Q(St+1, At+1)⇤Q(St, At)

h
. (6.7)

Sarsa

This update is done after every transition from a nonterminal state St. If
St+1 is terminal, then Q(St+1, At+1) is defined as zero. This rule uses every
element of the quintuple of events, (St, At, Rt+1, St+1, At+1), that make up a
transition from one state–action pair to the next. This quintuple gives rise to
the name Sarsa for the algorithm. The backup diagram for Sarsa is as shown
to the right.

It is straightforward to design an on-policy control algorithm based on the Sarsa
prediction method. As in all on-policy methods, we continually estimate q⇡ for the
behavior policy �, and at the same time change � toward greediness with respect to q⇡.
The general form of the Sarsa control algorithm is given in the box on the next page.

The convergence properties of the Sarsa algorithm depend on the nature of the policy’s
dependence on Q. For example, one could use "-greedy or "-soft policies. Sarsa converges
with probability 1 to an optimal policy and action-value function, under the usual
conditions on the step sizes (2.7), as long as all state–action pairs are visited an infinite
number of times and the policy converges in the limit to the greedy policy (which can be
arranged, for example, with "-greedy policies by setting " = 1/t).

Exercise 6.8 Show that an action-value version of (6.6) holds for the action-value form
of the TD error ↵t = Rt+1 + �Q(St+1, At+1)⇤Q(St, At), again assuming that the values
don’t change from step to step. ⇤

10 / 14

Sarsa Algorithm
130 Chapter 6: Temporal-Di�erence Learning

Sarsa (on-policy TD control) for estimating Q ⇡ q0

Algorithm parameters: step size � ⇤ (0, 1], small � > 0
Initialize Q(s, a), for all s ⇤ S+, a ⇤ A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., �-greedy)
Loop for each step of episode:

Take action A, observe R, S⇤

Choose A⇤ from S⇤ using policy derived from Q (e.g., �-greedy)
Q(S, A)/ Q(S, A) + �

P
R + �Q(S⇤, A⇤)⇠Q(S, A)

h

S / S⇤; A/ A⇤;
until S is terminal

Example 6.5: Windy Gridworld Shown inset below is a standard gridworld, with
start and goal states, but with one di�erence: there is a crosswind running upward
through the middle of the grid. The actions are the standard four—up, down, right,
and left—but in the middle region the resultant next states are shifted upward by a
“wind,” the strength of which varies from column to column. The strength of the wind

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150
170

Time steps

S G

0 0 0 01 1 1 12 2

Actions

Ep
iso

de
s

is given below each column, in num-
ber of cells shifted upward. For ex-
ample, if you are one cell to the
right of the goal, then the action
left takes you to the cell just above
the goal. This is an undiscounted
episodic task, with constant rewards
of ⇠1 until the goal state is reached.

The graph to the right shows the
results of applying �-greedy Sarsa to
this task, with � = 0.1, � = 0.5,
and the initial values Q(s, a) = 0
for all s, a. The increasing slope of
the graph shows that the goal was
reached more quickly over time. By
8000 time steps, the greedy policy was long since optimal (a trajectory from it is shown
inset); continued �-greedy exploration kept the average episode length at about 17 steps,
two more than the minimum of 15. Note that Monte Carlo methods cannot easily be
used here because termination is not guaranteed for all policies. If a policy was ever
found that caused the agent to stay in the same state, then the next episode would
never end. Online learning methods such as Sarsa do not have this problem because they
quickly learn during the episode that such policies are poor, and switch to something
else.

11 / 14

Example: Windy Grid World

130 Chapter 6: Temporal-Di�erence Learning

Sarsa (on-policy TD control) for estimating Q ⇡ q0

Algorithm parameters: step size � ⇤ (0, 1], small � > 0
Initialize Q(s, a), for all s ⇤ S+, a ⇤ A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., �-greedy)
Loop for each step of episode:

Take action A, observe R, S⇤

Choose A⇤ from S⇤ using policy derived from Q (e.g., �-greedy)
Q(S, A)/ Q(S, A) + �

P
R + �Q(S⇤, A⇤)⇠Q(S, A)

h

S / S⇤; A/ A⇤;
until S is terminal

Example 6.5: Windy Gridworld Shown inset below is a standard gridworld, with
start and goal states, but with one di�erence: there is a crosswind running upward
through the middle of the grid. The actions are the standard four—up, down, right,
and left—but in the middle region the resultant next states are shifted upward by a
“wind,” the strength of which varies from column to column. The strength of the wind

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150
170

Time steps

S G

0 0 0 01 1 1 12 2

Actions
Ep

iso
de

s

is given below each column, in num-
ber of cells shifted upward. For ex-
ample, if you are one cell to the
right of the goal, then the action
left takes you to the cell just above
the goal. This is an undiscounted
episodic task, with constant rewards
of ⇠1 until the goal state is reached.

The graph to the right shows the
results of applying �-greedy Sarsa to
this task, with � = 0.1, � = 0.5,
and the initial values Q(s, a) = 0
for all s, a. The increasing slope of
the graph shows that the goal was
reached more quickly over time. By
8000 time steps, the greedy policy was long since optimal (a trajectory from it is shown
inset); continued �-greedy exploration kept the average episode length at about 17 steps,
two more than the minimum of 15. Note that Monte Carlo methods cannot easily be
used here because termination is not guaranteed for all policies. If a policy was ever
found that caused the agent to stay in the same state, then the next episode would
never end. Online learning methods such as Sarsa do not have this problem because they
quickly learn during the episode that such policies are poor, and switch to something
else.

12 / 14

Q-Learning: Off-policy TD Control

Sarsa update:

Q(st, at)← Q(st, at) + α [Rt+1 + γQ(st+1, at+1)−Q(St, At)]

Q-learning update:

Q(st, at)← Q(st, at) + α
[
Rt+1 + γ max

a
Q(st+1, a)−Q(St, At)

]
Q-learning is off-policy because the value update is made using maxa rather than the a
recommended by the policy being followed.

13 / 14

Q-Learning Algorithm

6.5. Q-learning: O�-policy TD Control 131

Exercise 6.9: Windy Gridworld with King’s Moves (programming) Re-solve the windy
gridworld assuming eight possible actions, including the diagonal moves, rather than four.
How much better can you do with the extra actions? Can you do even better by including
a ninth action that causes no movement at all other than that caused by the wind? ⇤
Exercise 6.10: Stochastic Wind (programming) Re-solve the windy gridworld task with
King’s moves, assuming that the e�ect of the wind, if there is any, is stochastic, sometimes
varying by 1 from the mean values given for each column. That is, a third of the time
you move exactly according to these values, as in the previous exercise, but also a third
of the time you move one cell above that, and another third of the time you move one
cell below that. For example, if you are one cell to the right of the goal and you move
left, then one-third of the time you move one cell above the goal, one-third of the time
you move two cells above the goal, and one-third of the time you move to the goal. ⇤

6.5 Q-learning: O�-policy TD Control

One of the early breakthroughs in reinforcement learning was the development of an
o�-policy TD control algorithm known as Q-learning (Watkins, 1989), defined by

Q(St, At)⇡ Q(St, At) + �
P
Rt+1 + � max

a
Q(St+1, a)⇤Q(St, At)

h
. (6.8)

In this case, the learned action-value function, Q, directly approximates q0, the optimal
action-value function, independent of the policy being followed. This dramatically
simplifies the analysis of the algorithm and enabled early convergence proofs. The policy
still has an e�ect in that it determines which state–action pairs are visited and updated.
However, all that is required for correct convergence is that all pairs continue to be
updated. As we observed in Chapter 5, this is a minimal requirement in the sense that
any method guaranteed to find optimal behavior in the general case must require it.
Under this assumption and a variant of the usual stochastic approximation conditions on
the sequence of step-size parameters, Q has been shown to converge with probability 1 to
q0. The Q-learning algorithm is shown below in procedural form.

Q-learning (o↵-policy TD control) for estimating � / �0

Algorithm parameters: step size � ⇠ (0, 1], small " > 0
Initialize Q(s, a), for all s ⇠ S+, a ⇠ A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R, S⇤

Q(S, A)⇡ Q(S, A) + �
�
R + � maxa Q(S⇤, a)⇤Q(S, A)

�

S ⇡ S⇤

until S is terminal

14 / 14

