Reinforcement Learning
Temporal-Difference Learning (RLbook 6)

Christopher Simpkins

Kennesaw State University

1/14

Temporal-Difference Learning

» DP Review

» Dynamic programming
> Generalized policy iteration (GPI)

» Model-free control

» Monte Carlo control
» Temporal-difference learning

2/14

Dynamic Programming

Dynamic programming algorithms, as well as RL algorithms in general, contain two phases

(combined in value iteration):

» Prediction: estimate the value function
» Control: computing or approximating optimal policies

evaluation

Vs g
@ V
7~ greedy(V)

improvement

3/14

Generalized Policy lteration

In policy iteration we sweep entire state space in each step.

Uiy Tse

—_gr
s

In generalized policy iteration (GPI) we interleave prediction and control at arbitrary granularity.

> As long as we visit every state, still assured of convergence.

4/14

Monte Carlo Control

evaluation
m
@ Q

7~ greedy(Q),

o—(O—e—0

improvement

E—e

5/14

Temporal-Difference Learning

Combination of dynamic programming and Monte Carlo ideas.

» Like Monte Carlo, learn directly from experience without a model of the environment.
» Like dynamic programming, update estimates based in part on other learned estimates, without
waiting for a final outcome (bootstrap).

6/14

TD Prediction

Use experience following a policy to update estimate of V', namely vy;.
Monte Carlo methods wait until the return following the visit is known, then use that return as a
target for V' (S;):

V(St) = V(S¢) + a[Gy — V(Sy)] (6.1)

TD methods only until the next time step. At time ¢t + 1 they immediately form a target and make a
useful update using the observed reward R;;; and the estimate V' (S;41)

A simple TD method makes the update:

V(St) < V(S¢) + a[Rip1 + V(Sty1) — 7YV (Sh)]

immediate on transition to S;;1 and receiving Ryy1.

» Target for Monte Carlo update is G;.
» Target for TD update is Riy1 + YV (St41)

7/14

Tabular TD(0) Algorithm

One-step TD is called T'D(0), which is a special case of T D(\) and n-step methods.

Tabular TD(0) for estimating v

Input: the policy 7 to be evaluated
Algorithm parameter: step size « € (0, 1]
Initialize V (s), for all s € 8, arbitrarily except that V (terminal) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:
A < action given by 7 for S
Take action A, observe R, S’
V(S)+ V(S)+ a[R +V (8 — V(S)]
S5

until S is terminal

8/14

TD Error

Recall TD update:

V(St) = V(Si) + a[Rep1 + V(Si41) — YV (St)]

The quantity in brackets is called TD error — the difference in the
estimate value of S at time ¢ and ¢ + 1:

S O—e—0

0= Rip1 + V(Sey1) =7V (St)

9/14

Sarsa: On-policy TD Control

e . @ Rt+1 Rt+2 Rl+3 e
A; Ari Az Az

Sarsa update:

Q(st,at) Q(s¢,a¢) + a [Re1 + vQ(St41, ae41) — Q(St, Ar)]

I
!

10/14

Sarsa Algorithm

Sarsa (on-policy TD control) for estimating Q = g.

Algorithm parameters: step size a € (0,1], small € > 0
Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S,4) + Q(5,4) + a[R +1Q(S', 4) - Q(S, A)]
S+ 8 A A
until S is terminal

11/14

Example: Windy Grid World

170
150

Episodes
2

50

s B

| Actions

T
0

1000 2000 3000 4000 5000 6000 7000 8000

Time steps

12/14

Q-Learning: Off-policy TD Control

Sarsa update:

Q(st,a¢) < Q(st,a¢) + a [Rey1 +vQ(St41, asv1) — Q(St, At)]

Q-learning update:

Q(st,a:) Q(s¢,a¢) + [Rt-i-l + 7y max Q(st41,a) — Q(StyAt)}

Q-learning is off-policy because the value update is made using max,, rather than the a
recommended by the policy being followed.

13/14

Q-Learning Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ .,

Algorithm parameters: step size a € (0,1], small € > 0
Initialize Q(s, a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, 4) < Q(S, 4) + a[R + ymax, Q(S',a) - Q(S, 4)]
S+ S

until S is terminal

14/14

