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Monte Carlo Control

Monte Carlo methods are ways of solving the reinforcement learning problem based on averaging
sample returns.
▶ Monte carlo prediction of vπ and qπ values
▶ Policy improvement via monte carlo estimation of action values
▶ Monte carlo control via approximate policy and action-value functions
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First Visit Monte Carlo Prediction of State Values

92 Chapter 5: Monte Carlo Methods

To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from knowledge
of the MDP, here we learn value functions from sample returns with the MDP. The value
functions and corresponding policies still interact to attain optimality in essentially the
same way (GPI). As in the DP chapter, first we consider the prediction problem (the
computation of v⇡ and q⇡ for a fixed arbitrary policy �) then policy improvement, and,
finally, the control problem and its solution by GPI. Each of these ideas taken from DP
is extended to the Monte Carlo case in which only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function for a
given policy. Recall that the value of a state is the expected return—expected cumulative
future discounted reward—starting from that state. An obvious way to estimate it from
experience, then, is simply to average the returns observed after visits to that state. As
more returns are observed, the average should converge to the expected value. This idea
underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v⇡(s), the value of a state s under policy �,
given a set of episodes obtained by following � and passing through s. Each occurrence
of state s in an episode is called a visit to s. Of course, s may be visited multiple times
in the same episode; let us call the first time it is visited in an episode the first visit
to s. The first-visit MC method estimates v⇡(s) as the average of the returns following
first visits to s, whereas the every-visit MC method averages the returns following all
visits to s. These two Monte Carlo (MC) methods are very similar but have slightly
di�erent theoretical properties. First-visit MC has been most widely studied, dating back
to the 1940s, and is the one we focus on in this chapter. Every-visit MC extends more
naturally to function approximation and eligibility traces, as discussed in Chapters 9 and
12. First-visit MC is shown in procedural form in the box. Every-visit MC would be the
same except without the check for St having occurred earlier in the episode.

First-visit MC prediction, for estimating V � v⇡

Input: a policy " to be evaluated

Initialize:
V (s) 2 R, arbitrarily, for all s 2 S

Returns(s) ⇡ an empty list, for all s 2 S

Loop forever (for each episode):
Generate an episode following ": S0, A0, R1, S1, A1, R2, . . . , ST⇤1, AT⇤1, RT

G ⇡ 0
Loop for each step of episode, t = T 1, T 2, . . . , 0:

G ⇡ ↵G + Rt+1

Unless St appears in S0, S1, . . . , St⇤1:
Append G to Returns(St)
V (St) ⇡ average(Returns(St))
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Example: Blackjack

{=late x } \begin{cards} \crdpair{\crdKs}{\crdtenh}% \end{cards}
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Monte Carlo Prediction of Action Values
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Figure 5.1: Approximate state-value functions for the blackjack policy that sticks only on 20
or 21, computed by Monte Carlo policy evaluation.

Exercise 5.1 Consider the diagrams on the right in Figure 5.1. Why does the estimated
value function jump up for the last two rows in the rear? Why does it drop o� for the
whole last row on the left? Why are the frontmost values higher in the upper diagrams
than in the lower? ⇤
Exercise 5.2 Suppose every-visit MC was used instead of first-visit MC on the blackjack
task. Would you expect the results to be very di�erent? Why or why not? ⇤

Although we have complete knowledge of the environment in the blackjack task, it
would not be easy to apply DP methods to compute the value function. DP methods
require the distribution of next events—in particular, they require the environments
dynamics as given by the four-argument function p—and it is not easy to determine
this for blackjack. For example, suppose the player’s sum is 14 and he chooses to stick.
What is his probability of terminating with a reward of +1 as a function of the dealer’s
showing card? All of the probabilities must be computed before DP can be applied, and
such computations are often complex and error-prone. In contrast, generating the sample
games required by Monte Carlo methods is easy. This is the case surprisingly often; the
ability of Monte Carlo methods to work with sample episodes alone can be a significant
advantage even when one has complete knowledge of the environment’s dynamics.

Can we generalize the idea of backup diagrams to Monte Carlo algorithms? The
general idea of a backup diagram is to show at the top the root node to be updated and
to show below all the transitions and leaf nodes whose rewards and estimated values
contribute to the update. For Monte Carlo estimation of v⇡, the root is a state node, and
below it is the entire trajectory of transitions along a particular single episode, ending
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Value Backups
In dynamic programming MDP solution, values are backed
up from each possible successor states:

vπ =
∑

a

π(a | s)
∑
s′,r

p(s′, r | s, a) [r + γvπ(s′)]

3.5. Policies and Value Functions 59

averages are kept for each action taken in each state, then these averages will similarly
converge to the action values, q⇡(s, a). We call estimation methods of this kind Monte
Carlo methods because they involve averaging over many random samples of actual returns.
These kinds of methods are presented in Chapter 5. Of course, if there are very many
states, then it may not be practical to keep separate averages for each state individually.
Instead, the agent would have to maintain v⇡ and q⇡ as parameterized functions (with
fewer parameters than states) and adjust the parameters to better match the observed
returns. This can also produce accurate estimates, although much depends on the nature
of the parameterized function approximator. These possibilities are discussed in Part II
of the book.

A fundamental property of value functions used throughout reinforcement learning and
dynamic programming is that they satisfy recursive relationships similar to that which
we have already established for the return (3.9). For any policy � and any state s, the
following consistency condition holds between the value of s and the value of its possible
successor states:

v⇡(s)
.
= E⇡[Gt | St =s]

= E⇡[Rt+1 + �Gt+1 | St =s] (by (3.9))

=
P

a

�(a|s)
P

s0

P

r

p(s0, r |s, a)
h
r + �E⇡[Gt+1|St+1 =s0]

�

=
P

a

�(a|s)
P

s0,r

p(s0, r |s, a)
h
r + �v⇡(s0)

�
, for all s ⇡ S, (3.14)

where it is implicit that the actions, a, are taken from the set A(s), that the next states,
s0, are taken from the set S (or from S+ in the case of an episodic problem), and that
the rewards, r, are taken from the set R. Note also how in the last equation we have
merged the two sums, one over all the values of s0 and the other over all the values of r,
into one sum over all the possible values of both. We use this kind of merged sum often
to simplify formulas. Note how the final expression can be read easily as an expected
value. It is really a sum over all values of the three variables, a, s0, and r. For each triple,
we compute its probability, �(a|s)p(s0, r |s, a), weight the quantity in brackets by that
probability, then sum over all possibilities to get an expected value.

⇡

s

s0

⇡

rp

a

Backup diagram for v⇡

Equation (3.14) is the Bellman equation for v⇡. It expresses
a relationship between the value of a state and the values of
its successor states. Think of looking ahead from a state to its
possible successor states, as suggested by the diagram to the
right. Each open circle represents a state and each solid circle
represents a state–action pair. Starting from state s, the root
node at the top, the agent could take any of some set of actions—
three are shown in the diagram—based on its policy �. From
each of these, the environment could respond with one of several next states, s0 (two are
shown in the figure), along with a reward, r, depending on its dynamics given by the
function p. The Bellman equation (3.14) averages over all the possibilities, weighting each
by its probability of occurring. It states that the value of the start state must equal the
(discounted) value of the expected next state, plus the reward expected along the way.

DP one-step, all successors value backup

5.1. Monte Carlo Prediction 95

at the terminal state, as shown to the right. Whereas the DP diagram (page 59)
shows all possible transitions, the Monte Carlo diagram shows only those sampled
on the one episode. Whereas the DP diagram includes only one-step transitions,
the Monte Carlo diagram goes all the way to the end of the episode. These
di�erences in the diagrams accurately reflect the fundamental di�erences between
the algorithms.

An important fact about Monte Carlo methods is that the estimates for each
state are independent. The estimate for one state does not build upon the estimate
of any other state, as is the case in DP. In other words, Monte Carlo methods do
not bootstrap as we defined it in the previous chapter.

In particular, note that the computational expense of estimating the value of
a single state is independent of the number of states. This can make Monte Carlo
methods particularly attractive when one requires the value of only one or a subset
of states. One can generate many sample episodes starting from the states of interest,
averaging returns from only these states, ignoring all others. This is a third advantage
Monte Carlo methods can have over DP methods (after the ability to learn from actual
experience and from simulated experience).

A bubble on a wire loop.

From Hersh and Griego (1969). Reproduced with
permission. ©1969 Scientific American, a divi-
sion of Nature America, Inc. All rights reserved.

Example 5.2: Soap Bubble Suppose a wire
frame forming a closed loop is dunked in soapy
water to form a soap surface or bubble conform-
ing at its edges to the wire frame. If the geom-
etry of the wire frame is irregular but known,
how can you compute the shape of the surface?
The shape has the property that the total force
on each point exerted by neighboring points is
zero (or else the shape would change). This
means that the surface’s height at any point is
the average of its heights at points in a small
circle around that point. In addition, the sur-
face must meet at its boundaries with the wire
frame. The usual approach to problems of this
kind is to put a grid over the area covered by
the surface and solve for its height at the grid points by an iterative computation. Grid
points at the boundary are forced to the wire frame, and all others are adjusted toward
the average of the heights of their four nearest neighbors. This process then iterates, much
like DP’s iterative policy evaluation, and ultimately converges to a close approximation
to the desired surface.

This is similar to the kind of problem for which Monte Carlo methods were originally
designed. Instead of the iterative computation described above, imagine standing on the
surface and taking a random walk, stepping randomly from grid point to neighboring
grid point, with equal probability, until you reach the boundary. It turns out that the
expected value of the height at the boundary is a close approximation to the height of
the desired surface at the starting point (in fact, it is exactly the value computed by the
iterative method described above). Thus, one can closely approximate the height of the

MC full single trajectory backup
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to consider only policies that are stochastic with a nonzero probability of selecting all
actions in each state. We discuss two important variants of this approach in later sections.
For now, we retain the assumption of exploring starts and complete the presentation of a
full Monte Carlo control method.

Exercise 5.3 What is the backup diagram for Monte Carlo estimation of q⇡? ⇤

5.3 Monte Carlo Control

We are now ready to consider how Monte Carlo estimation can be used in control, that
is, to approximate optimal policies. The overall idea is to proceed according to the same
pattern as in the DP chapter, that is, according to the idea of generalized policy iteration

evaluation

improvement

⇡ Q

⇡ � greedy(Q)

Q � q⇡

(GPI). In GPI one maintains both an approximate policy and
an approximate value function. The value function is repeatedly
altered to more closely approximate the value function for the
current policy, and the policy is repeatedly improved with respect
to the current value function, as suggested by the diagram to
the right. These two kinds of changes work against each other to
some extent, as each creates a moving target for the other, but
together they cause both policy and value function to approach
optimality.

To begin, let us consider a Monte Carlo version of classical policy iteration. In
this method, we perform alternating complete steps of policy evaluation and policy
improvement, beginning with an arbitrary policy �0 and ending with the optimal policy
and optimal action-value function:

�0
E⇡⇤ q⇡0

I⇡⇤ �1
E⇡⇤ q⇡1

I⇡⇤ �2
E⇡⇤ · · · I⇡⇤ �0

E⇡⇤ q0,

where
E⇡⇤ denotes a complete policy evaluation and

I⇡⇤ denotes a complete policy
improvement. Policy evaluation is done exactly as described in the preceding section.
Many episodes are experienced, with the approximate action-value function approaching
the true function asymptotically. For the moment, let us assume that we do indeed
observe an infinite number of episodes and that, in addition, the episodes are generated
with exploring starts. Under these assumptions, the Monte Carlo methods will compute
each q⇡k

exactly, for arbitrary �k.

Policy improvement is done by making the policy greedy with respect to the current
value function. In this case we have an action-value function, and therefore no model is
needed to construct the greedy policy. For any action-value function q, the corresponding
greedy policy is the one that, for each s / S, deterministically chooses an action with
maximal action-value:

�(s)
.
= arg max

a
q(s, a). (5.1)

Policy improvement then can be done by constructing each �k+1 as the greedy policy
with respect to q⇡k

. The policy improvement theorem (Section 4.2) then applies to �k
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Monte Carlo ES (Exploring Starts), for estimating � ⇡ �0

Initialize:
�(s) ⇤ A(s) (arbitrarily), for all s ⇤ S

Q(s, a) ⇤ R (arbitrarily), for all s ⇤ S, a ⇤ A(s)
Returns(s, a)/ empty list, for all s ⇤ S, a ⇤ A(s)

Loop forever (for each episode):
Choose S0 ⇤ S, A0 ⇤ A(S0) randomly such that all pairs have probability > 0
Generate an episode from S0, A0, following �: S0, A0, R1, . . . , ST⇤1, AT⇤1, RT

G/ 0
Loop for each step of episode, t = T⇠1, T⇠2, . . . , 0:

G/ �G + Rt+1

Unless the pair St, At appears in S0, A0, S1, A1 . . . , St⇤1, At⇤1:
Append G to Returns(St, At)
Q(St, At)/ average(Returns(St, At))
�(St)/ argmaxa Q(St, a)

Exercise 5.4 The pseudocode for Monte Carlo ES is ine�cient because, for each state–
action pair, it maintains a list of all returns and repeatedly calculates their mean. It would
be more e�cient to use techniques similar to those explained in Section 2.4 to maintain
just the mean and a count (for each state–action pair) and update them incrementally.
Describe how the pseudocode would be altered to achieve this. ⇤

In Monte Carlo ES, all the returns for each state–action pair are accumulated and
averaged, irrespective of what policy was in force when they were observed. It is easy
to see that Monte Carlo ES cannot converge to any suboptimal policy. If it did, then
the value function would eventually converge to the value function for that policy, and
that in turn would cause the policy to change. Stability is achieved only when both
the policy and the value function are optimal. Convergence to this optimal fixed point
seems inevitable as the changes to the action-value function decrease over time, but has
not yet been formally proved. In our opinion, this is one of the most fundamental open
theoretical questions in reinforcement learning (for a partial solution, see Tsitsiklis, 2002).

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo ES to
blackjack. Because the episodes are all simulated games, it is easy to arrange for exploring
starts that include all possibilities. In this case one simply picks the dealer’s cards, the
player’s sum, and whether or not the player has a usable ace, all at random with equal
probability. As the initial policy we use the policy evaluated in the previous blackjack
example, that which sticks only on 20 or 21. The initial action-value function can be zero
for all state–action pairs. Figure 5.2 shows the optimal policy for blackjack found by
Monte Carlo ES. This policy is the same as the “basic” strategy of Thorp (1966) with the
sole exception of the leftmost notch in the policy for a usable ace, which is not present
in Thorp’s strategy. We are uncertain of the reason for this discrepancy, but confident
that what is shown here is indeed the optimal policy for the version of blackjack we have
described.
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Figure 5.2: The optimal policy and state-value function for blackjack, found by Monte Carlo
ES. The state-value function shown was computed from the action-value function found by
Monte Carlo ES.

5.4 Monte Carlo Control without Exploring Starts

How can we avoid the unlikely assumption of exploring starts? The only general way to
ensure that all actions are selected infinitely often is for the agent to continue to select
them. There are two approaches to ensuring this, resulting in what we call on-policy
methods and o↵-policy methods. On-policy methods attempt to evaluate or improve the
policy that is used to make decisions, whereas o�-policy methods evaluate or improve
a policy di�erent from that used to generate the data. The Monte Carlo ES method
developed above is an example of an on-policy method. In this section we show how an
on-policy Monte Carlo control method can be designed that does not use the unrealistic
assumption of exploring starts. O�-policy methods are considered in the next section.

In on-policy control methods the policy is generally soft, meaning that �(a|s) > 0
for all s ⇡ S and all a ⇡ A(s), but gradually shifted closer and closer to a deterministic
optimal policy. Many of the methods discussed in Chapter 2 provide mechanisms for
this. The on-policy method we present in this section uses �-greedy policies, meaning
that most of the time they choose an action that has maximal estimated action value,
but with probability � they instead select an action at random. That is, all nongreedy
actions are given the minimal probability of selection, ⇡

|A(s)| , and the remaining bulk of

the probability, 1⇤ � + ⇡
|A(s)| , is given to the greedy action. The �-greedy policies are

examples of �-soft policies, defined as policies for which �(a|s) / ⇡
|A(s)| for all states and

actions, for some � > 0. Among �-soft policies, �-greedy policies are in some sense those
that are closest to greedy.
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The overall idea of on-policy Monte Carlo control is still that of GPI. As in Monte
Carlo ES, we use first-visit MC methods to estimate the action-value function for the
current policy. Without the assumption of exploring starts, however, we cannot simply
improve the policy by making it greedy with respect to the current value function, because
that would prevent further exploration of nongreedy actions. Fortunately, GPI does not
require that the policy be taken all the way to a greedy policy, only that it be moved
toward a greedy policy. In our on-policy method we will move it only to an �-greedy
policy. For any �-soft policy, �, any �-greedy policy with respect to q⇡ is guaranteed to
be better than or equal to �. The complete algorithm is given in the box below.

On-policy first-visit MC control (for �-soft policies), estimates � ⇡ �0

Algorithm parameter: small � > 0

Initialize:
� ⇤ an arbitrary �-soft policy
Q(s, a) / R (arbitrarily), for all s / S, a / A(s)
Returns(s, a) ⇤ empty list, for all s / S, a / A(s)

Repeat forever (for each episode):
Generate an episode following �: S0, A0, R1, . . . , ST⇤1, AT⇤1, RT

G ⇤ 0
Loop for each step of episode, t = T⇠1, T⇠2, . . . , 0:

G ⇤ �G + Rt+1

Unless the pair St, At appears in S0, A0, S1, A1 . . . , St⇤1, At⇤1:
Append G to Returns(St, At)
Q(St, At) ⇤ average(Returns(St, At))
A0 ⇤ argmaxa Q(St, a) (with ties broken arbitrarily)
For all a / A(St):

�(a|St) ⇤
P

1⇠ � + �/|A(St)| if a = A0

�/|A(St)| if a != A0

That any �-greedy policy with respect to q⇡ is an improvement over any �-soft policy
� is assured by the policy improvement theorem. Let �� be the �-greedy policy. The
conditions of the policy improvement theorem apply because for any s / S:

q⇡(s, ��(s)) =
h

a

��(a|s)q⇡(s, a)

=
�

|A(s)|
h

a

q⇡(s, a) + (1⇠ �) max
a

q⇡(s, a) (5.2)

 �

|A(s)|
h

a

q⇡(s, a) + (1⇠ �)
h

a

�(a|s)⇠ �
|A(s)|

1⇠ �
q⇡(s, a)
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Example 5.4: O↵-policy Estimation of a Blackjack State Value We applied
both ordinary and weighted importance-sampling methods to estimate the value of a single
blackjack state (Example 5.1) from o�-policy data. Recall that one of the advantages of
Monte Carlo methods is that they can be used to evaluate a single state without forming
estimates for any other states. In this example, we evaluated the state in which the dealer
is showing a deuce, the sum of the player’s cards is 13, and the player has a usable ace (that
is, the player holds an ace and a deuce, or equivalently three aces). The data was generated
by starting in this state then choosing to hit or stick at random with equal probability
(the behavior policy). The target policy was to stick only on a sum of 20 or 21, as in
Example 5.1. The value of this state under the target policy is approximately ⇡0.27726
(this was determined by separately generating one-hundred million episodes using the
target policy and averaging their returns). Both o�-policy methods closely approximated
this value after 1000 o�-policy episodes using the random policy. To make sure they did
this reliably, we performed 100 independent runs, each starting from estimates of zero
and learning for 10,000 episodes. Figure 5.3 shows the resultant learning curves—the
squared error of the estimates of each method as a function of number of episodes,
averaged over the 100 runs. The error approaches zero for both algorithms, but the
weighted importance-sampling method has much lower error at the beginning, as is typical
in practice.

Ordinary 
importance 
sampling

Weighted importance sampling

Episodes (log scale)
0 10 100 1000 10,000

Mean
square
error

(average over
100 runs)

0

5

Figure 5.3: Weighted importance sampling produces lower error estimates of the value of a
single blackjack state from o↵-policy episodes.

Example 5.5: Infinite Variance The estimates of ordinary importance sampling will
typically have infinite variance, and thus unsatisfactory convergence properties, whenever
the scaled returns have infinite variance—and this can easily happen in o�-policy learning
when trajectories contain loops. A simple example is shown inset in Figure 5.4. There is
only one nonterminal state s and two actions, right and left. The right action causes a
deterministic transition to termination, whereas the left action transitions, with probability
0.9, back to s or, with probability 0.1, on to termination. The rewards are +1 on the
latter transition and otherwise zero. Consider the target policy that always selects left.
All episodes under this policy consist of some number (possibly zero) of transitions back
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to s followed by termination with a reward and return of +1. Thus the value of s under
the target policy is 1 (� = 1). Suppose we are estimating this value from o�-policy data
using the behavior policy that selects right and left with equal probability.

1

100,000 1,000,000 10,000,000 100,000,000

2

0.1

0.9

R = +1

s

⇡(left|s) = 1

left
right
R = 0

R = 0

b(left|s) =
1

2

v⇡(s)

Monte-Carlo 
estimate of 
          with 
ordinary

importance 
sampling
(ten runs)

Episodes (log scale)
1 10 100 1000 10,000

0

Figure 5.4: Ordinary importance sampling produces surprisingly unstable estimates on the
one-state MDP shown inset (Example 5.5). The correct estimate here is 1 (" = 1), and, even
though this is the expected value of a sample return (after importance sampling), the variance
of the samples is infinite, and the estimates do not converge to this value. These results are for
o↵-policy first-visit MC.

The lower part of Figure 5.4 shows ten independent runs of the first-visit MC algorithm
using ordinary importance sampling. Even after millions of episodes, the estimates fail
to converge to the correct value of 1. In contrast, the weighted importance-sampling
algorithm would give an estimate of exactly 1 forever after the first episode that ended
with the left action. All returns not equal to 1 (that is, ending with the right action)
would be inconsistent with the target policy and thus would have a �t:T (t)01 of zero and
contribute neither to the numerator nor denominator of (5.6). The weighted importance-
sampling algorithm produces a weighted average of only the returns consistent with the
target policy, and all of these would be exactly 1.

We can verify that the variance of the importance-sampling-scaled returns is infinite
in this example by a simple calculation. The variance of any random variable X is the
expected value of the deviation from its mean X̄, which can be written

Var[X]
.
= E

Ph
X ⇡ X̄

�2�
= E

i
X2 ⇡ 2XX̄ + X̄2

�
= E

i
X2
�
⇡ X̄2.

Thus, if the mean is finite, as it is in our case, the variance is infinite if and only if the
expectation of the square of the random variable is infinite. Thus, we need only show
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O↵-policy MC prediction (policy evaluation) for estimating Q ⇡ q⇡

Input: an arbitrary target policy �
Initialize, for all s ⇤ S, a ⇤ A(s):

Q(s, a) ⇤ R (arbitrarily)
C(s, a)/ 0

Loop forever (for each episode):
b/ any policy with coverage of �
Generate an episode following b: S0, A0, R1, . . . , ST01, AT01, RT

G/ 0
W / 1
Loop for each step of episode, t = T⇠1, T⇠2, . . . , 0, while W != 0:

G/ �G + Rt+1

C(St, At)/ C(St, At) + W
Q(St, At)/ Q(St, At) + W

C(St,At)
[G⇠Q(St, At)]

W /W ⇡(At|St)
b(At|St)

5.7 O�-policy Monte Carlo Control

We are now ready to present an example of the second class of learning control methods
we consider in this book: o�-policy methods. Recall that the distinguishing feature of
on-policy methods is that they estimate the value of a policy while using it for control.
In o�-policy methods these two functions are separated. The policy used to generate
behavior, called the behavior policy, may in fact be unrelated to the policy that is
evaluated and improved, called the target policy. An advantage of this separation is
that the target policy may be deterministic (e.g., greedy), while the behavior policy can
continue to sample all possible actions.

O�-policy Monte Carlo control methods use one of the techniques presented in the
preceding two sections. They follow the behavior policy while learning about and
improving the target policy. These techniques require that the behavior policy has a
nonzero probability of selecting all actions that might be selected by the target policy
(coverage). To explore all possibilities, we require that the behavior policy be soft (i.e.,
that it select all actions in all states with nonzero probability).

The box on the next page shows an o�-policy Monte Carlo control method, based on
GPI and weighted importance sampling, for estimating �⇤ and q⇤. The target policy
� ⇡ �⇤ is the greedy policy with respect to Q, which is an estimate of q⇡. The behavior
policy b can be anything, but in order to assure convergence of � to the optimal policy, an
infinite number of returns must be obtained for each pair of state and action. This can be
assured by choosing b to be �-soft. The policy � converges to optimal at all encountered
states even though actions are selected according to a di�erent soft policy b, which may
change between or even within episodes.
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O↵-policy MC control, for estimating � ⇡ �0

Initialize, for all s ⇤ S, a ⇤ A(s):
Q(s, a) ⇤ R (arbitrarily)
C(s, a) / 0
�(s) / argmaxa Q(s, a) (with ties broken consistently)

Loop forever (for each episode):
b / any soft policy
Generate an episode using b: S0, A0, R1, . . . , ST⇤1, AT⇤1, RT

G / 0
W / 1
Loop for each step of episode, t = T⇠1, T⇠2, . . . , 0:

G / �G + Rt+1

C(St, At) / C(St, At) + W
Q(St, At) / Q(St, At) + W

C(St,At)
[G⇠Q(St, At)]

�(St) / argmaxa Q(St, a) (with ties broken consistently)
If At != �(St) then exit inner Loop (proceed to next episode)
W / W 1

b(At|St)

A potential problem is that this method learns only from the tails of episodes, when
all of the remaining actions in the episode are greedy. If nongreedy actions are common,
then learning will be slow, particularly for states appearing in the early portions of
long episodes. Potentially, this could greatly slow learning. There has been insu�cient
experience with o↵-policy Monte Carlo methods to assess how serious this problem is. If
it is serious, the most important way to address it is probably by incorporating temporal-
di↵erence learning, the algorithmic idea developed in the next chapter. Alternatively, if �
is less than 1, then the idea developed in the next section may also help significantly.

Exercise 5.11 In the boxed algorithm for o↵-policy MC control, you may have been

expecting the W update to have involved the importance-sampling ratio ⇡(At|St)
b(At|St)

, but

instead it involves 1
b(At|St)

. Why is this nevertheless correct? ⇤

Exercise 5.12: Racetrack (programming) Consider driving a race car around a turn
like those shown in Figure 5.5. You want to go as fast as possible, but not so fast as
to run o↵ the track. In our simplified racetrack, the car is at one of a discrete set of
grid positions, the cells in the diagram. The velocity is also discrete, a number of grid
cells moved horizontally and vertically per time step. The actions are increments to the
velocity components. Each may be changed by +1, ⇠1, or 0 in each step, for a total of
nine (3 3) actions. Both velocity components are restricted to be nonnegative and less
than 5, and they cannot both be zero except at the starting line. Each episode begins
in one of the randomly selected start states with both velocity components zero and
ends when the car crosses the finish line. The rewards are ⇠1 for each step until the car
crosses the finish line. If the car hits the track boundary, it is moved back to a random
position on the starting line, both velocity components are reduced to zero, and the
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Starting line

Finish
line
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line

Figure 5.5: A couple of right turns for the racetrack task.

episode continues. Before updating the car’s location at each time step, check to see if
the projected path of the car intersects the track boundary. If it intersects the finish line,
the episode ends; if it intersects anywhere else, the car is considered to have hit the track
boundary and is sent back to the starting line. To make the task more challenging, with
probability 0.1 at each time step the velocity increments are both zero, independently of
the intended increments. Apply a Monte Carlo control method to this task to compute
the optimal policy from each starting state. Exhibit several trajectories following the
optimal policy (but turn the noise o� for these trajectories). ⇤

5.8 *Discounting-aware Importance Sampling

The o�-policy methods that we have considered so far are based on forming importance-
sampling weights for returns considered as unitary wholes, without taking into account
the returns’ internal structures as sums of discounted rewards. We now briefly consider
cutting-edge research ideas for using this structure to significantly reduce the variance of
o�-policy estimators.

For example, consider the case where episodes are long and � is significantly less than
1. For concreteness, say that episodes last 100 steps and that � = 0. The return from
time 0 will then be just G0 = R1, but its importance sampling ratio will be a product of

100 factors, ⇡(A0|S0)
b(A0|S0)

⇡(A1|S1)
b(A1|S1)

· · · ⇡(A99|S99)
b(A99|S99)

. In ordinary importance sampling, the return

will be scaled by the entire product, but it is really only necessary to scale by the first

factor, by ⇡(A0|S0)
b(A0|S0)

. The other 99 factors ⇡(A1|S1)
b(A1|S1)

· · · ⇡(A99|S99)
b(A99|S99)

are irrelevant because

after the first reward the return has already been determined. These later factors are
all independent of the return and of expected value 1; they do not change the expected
update, but they add enormously to its variance. In some cases they could even make the
variance infinite. Let us now consider an idea for avoiding this large extraneous variance.
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