Required Materials
- RLAI: Reinforcement Learning: An Introduction http://incompleteideas.net/book/the-book.html
Recommended Materials
- AIMA: Artificial Intelligence: A Modern Approach, 4ed, by Stuart Russell and Peter Norvig, https://aima.cs.berkeley.edu/. US or Global Edition
- PMLAI: Probabilistic Machine Learning: An Introduction https://probml.github.io/pml-book/book1.html
Schedule
| # | Topics | Reading/Resources | Exercises | ||
|---|---|---|---|---|---|
| Tabular Solution Methods | |||||
| 1 | Introduction to the Course |
Syllabus Resources Meet Prof. Simpkins |
|||
| 2 | Introduction to RL | AIMA: 1 | |||
| 3 | Multi-Armed Bandits | RLAI: 2 | |||
| 4 | Markov Decision Processes | RLAI: 3 | |||
| 5 | Dynamic Programming | RLAI: 4 | |||
| 6 | Monte Carlo Control | RLAI: 6 | |||
| 7 | Temporal-Difference Learning | RLAI: 6 | |||
| 8 | n-step Bootstrapping | RLAI: 7 | |||
| 9 | Tabular Planning and Learning | RLAI: 8 | |||
| Function Approximation and Deep Reinforcement Learning | |||||
| 10 | On-policy Prediction | RLAI: 9 | |||
| 11 | On-policy Control | RLAI: 10 | |||
| 12 | Off Policy Methods | RLAI: 11 | |||
| 13 | Eligibility Traces | RLAI: 12 | |||
| 14 | Policy Gradient Methods | RLAI: 13 | |||
| 15 | Deep Learning | MARL: 7 | |||
| 16 | Deep Reinforcement Learning | MARL: 8 | |||
| Multi-Agent Reinforcement Learning | |||||
| 17 | Games | MARL: 3 | |||
| 18 | Game Solutions | MARL: 4 | |||
| 19 | MARL in Games | MARL: 5 | |||
| 20 | MARL Algorithms | MARL: 6 | |||
| 21 | Deep MARL | MARL: 9 | |||
| 22 | Deep MARL | MARL: 9 | |||
| 23 | Deep MARL | MARL: 9 | |||
| 24 | Deep MARL | MARL: 9 | |||
| 25 | Practical Deep MARL | MARL: 10 | |||
| 26 | MARL Environments | MARL: 11 | |||