Required Materials

Recommended Materials

Schedule

#TopicsReading/ResourcesExercises
Tabular Solution Methods
1 Introduction to the Course Syllabus
Resources
Meet Prof. Simpkins
2 Introduction to RL AIMA: 1
3 Multi-Armed Bandits RLAI: 2
4 Markov Decision Processes RLAI: 3
5 Dynamic Programming RLAI: 4
6 Monte Carlo Control RLAI: 6
7 Temporal-Difference Learning RLAI: 6
8 n-step Bootstrapping RLAI: 7
9 Tabular Planning and Learning RLAI: 8
Function Approximation and Deep Reinforcement Learning
10 On-policy Prediction RLAI: 9
11 On-policy Control RLAI: 10
12 Off Policy Methods RLAI: 11
13 Eligibility Traces RLAI: 12
14 Policy Gradient Methods RLAI: 13
15 Deep Learning MARL: 7
16 Deep Reinforcement Learning MARL: 8
Multi-Agent Reinforcement Learning
17 Games MARL: 3
18 Game Solutions MARL: 4
19 MARL in Games MARL: 5
20 MARL Algorithms MARL: 6
21 Deep MARL MARL: 9
22 Deep MARL MARL: 9
23 Deep MARL MARL: 9
24 Deep MARL MARL: 9
25 Practical Deep MARL MARL: 10
26 MARL Environments MARL: 11