Required Materials

Recommended Materials

Schedule

#TopicsReading/ResourcesExercises
Tabular Solution Methods
1 Introduction to RL RLAI: 1
MARL: 1
Syllabus
Resources
Meet Prof. Simpkins
2 Multi-Armed Bandits RLAI: 2
3 Markov Decision Processes RLAI: 3
4 Dynamic Programming RLAI: 4
5 Monte Carlo Control RLAI: 5
6 Temporal-Difference Learning RLAI: 6
7 n-step Bootstrapping RLAI: 7
8 Tabular Planning and Learning RLAI: 8
Function Approximation and Deep Reinforcement Learning
9 On-policy Prediction RLAI: 9
10 On-policy Control RLAI: 10
11 Off Policy Methods RLAI: 11
12 Eligibility Traces RLAI: 12
13 Policy Gradient Methods RLAI: 13
14 Deep Learning MARL: 7
15 Deep Reinforcement Learning MARL: 8
Multi-Agent Reinforcement Learning
16 Games MARL: 3
17 Game Solutions MARL: 4
18 MARL in Games MARL: 5
19 MARL Algorithms MARL: 6
20 Deep MARL MARL: 91-9.4
21 Deep MARL Value Decomposition MARL: 9.5
22 Deep MARL Agent Modeling MARL: 9.6-9.7
23 Deep MARL Self-Play MARL: 9.8-9.9
24 Practical Deep MARL MARL: 10
25 MARL Environments MARL: 11