{ "cells": [ { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateDayTimePred(ft)Pred(cm)High/Low
12017-01-01Sun10:13:002.988H
552017-01-15Sun10:20:003.091H
4032017-04-15Sat11:46:002.370H
4572017-04-29Sat11:17:002.988H
5112017-05-13Sat10:40:002.473H
5152017-05-14Sun11:20:002.370H
5652017-05-27Sat10:06:002.988H
5692017-05-28Sun11:02:002.885H
6232017-06-11Sun10:15:002.370H
9712017-09-09Sat11:10:003.7113H
10252017-09-23Sat11:13:003.7113H
10292017-09-24Sun11:56:003.6110H
10792017-10-07Sat10:01:004.1125H
10832017-10-08Sun10:50:004.1125H
11332017-10-21Sat10:03:003.8116H
11372017-10-22Sun10:43:003.8116H
13772017-12-23Sat11:27:002.885H
\n", "
" ], "text/plain": [ " Date Day Time Pred(ft) Pred(cm) High/Low\n", "1 2017-01-01 Sun 10:13:00 2.9 88 H\n", "55 2017-01-15 Sun 10:20:00 3.0 91 H\n", "403 2017-04-15 Sat 11:46:00 2.3 70 H\n", "457 2017-04-29 Sat 11:17:00 2.9 88 H\n", "511 2017-05-13 Sat 10:40:00 2.4 73 H\n", "515 2017-05-14 Sun 11:20:00 2.3 70 H\n", "565 2017-05-27 Sat 10:06:00 2.9 88 H\n", "569 2017-05-28 Sun 11:02:00 2.8 85 H\n", "623 2017-06-11 Sun 10:15:00 2.3 70 H\n", "971 2017-09-09 Sat 11:10:00 3.7 113 H\n", "1025 2017-09-23 Sat 11:13:00 3.7 113 H\n", "1029 2017-09-24 Sun 11:56:00 3.6 110 H\n", "1079 2017-10-07 Sat 10:01:00 4.1 125 H\n", "1083 2017-10-08 Sun 10:50:00 4.1 125 H\n", "1133 2017-10-21 Sat 10:03:00 3.8 116 H\n", "1137 2017-10-22 Sun 10:43:00 3.8 116 H\n", "1377 2017-12-23 Sat 11:27:00 2.8 85 H" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "import datetime as dt\n", "\n", "tides = pd.read_csv('wpb-tides-2017.txt',\n", " sep='\\t',\n", " skiprows=14,\n", " header=None,\n", " usecols=[0,1,2,3,5,7],\n", " names=['Date', 'Day', 'Time', 'Pred(ft)', 'Pred(cm)', 'High/Low'],\n", " parse_dates=['Date'],\n", " converters={\"Time\": lambda time: dt.datetime.strptime(time, \"%I:%M %p\").time()})\n", "\n", "tides[(tides['High/Low'] == 'H') & \n", " ((tides['Day'] == 'Sat') | (tides['Day'] == 'Sun')) &\n", " (tides['Time'] > dt.datetime.strptime(\"10:00 AM\", \"%I:%M %p\").time()) &\n", " (tides['Time'] < dt.datetime.strptime(\"11:59 AM\", \"%I:%M %p\").time())]\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }