
Values and Variables

1 / 13

Languages and Computation

Every powerful language has three mechanisms for combining simple ideas to form more
complex ideas:(SICP 1.1)
▶ primitive expressions, which represent the simplest entities the language is

concerned with,
▶ means of combination, by which compound elements are built from simpler ones,

and
▶ means of abstraction, by which compound elements can be named and manipulated

as units.
By the end of this lesson you will
▶ know what a value is and how to create one,
▶ know what a variable is and how to use them as simple means of abstraction.
▶ know what a type is and how it constrains what you can do with expressions, and
▶ know what an expression is how to combine them produce new values,

2 / 13

http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html

Values

Figure 1: Values

3 / 13

Values and Expressions
value a well-defined chunk of data in memory

expression a sequence of symbols that can be evaluated to produce a value
When you an expression into the Python REPL, Python evaluates it and prints its value.

1 >>> 1
2 1
3 >>> 3.14
4 3.14
5 >>> "pie"
6 'pie '

The simplest expressions are literal values, as in the examples above.
literal the textual representation of a value in source code.

Compound expressions combine values using operators. Here the + operator combines
the two literal values 2 and 3 – the operands – to produce the value 5:

1 >>> 2 + 3
2 5

Have a Python REPL session open for this lesson so you can follow along and try your
own ideas.

4 / 13

Types

You can think of a type
▶ structurally: as an interpretation of the bits comprising a chunk of data,
▶ denotationaly: as a set of values, or
▶ abstraction-based: as the set of operations available for a type.

All values have types. Python can tell you the type of a value with the built-in type

function:
1 >>> type (1)
2 <class 'int '>
3 >>> type (3.14)
4 <class 'float '>
5 >>> type("pie")
6 <class 'str '>

Active Review
▶ What’s the type of '1'?

5 / 13

Variables

Think of a variable as a name for a value. You bind a value to a variable using an
assignment statement (or by passing an argument to a function), after which the
variable denotes the value:

1 >>> a = "Ok"
2 >>> a
3 'Ok '

= is the assignment operator. An assignment statement has the form:
<variable_name> = <expression>

You can unbind a variable with the del function.
1 >>> del(a)
2 >>> a
3 Traceback (most recent call last):
4 File "<stdin >", line 1, in <module >
5 NameError : name 'a' is not defined

6 / 13

Variable Names

Variable names, or identifiers, may contain letters, numbers, or underscores and may not
begin with a number.

Active Review
▶ What happens when you execute this assignment statement?
1 >>> 16 _candles = " Molly Ringwald "

7 / 13

Keywords
Python reserves keywords for its own use.

1 >>> from keyword import kwlist
2 >>> import math
3 >>> numrows = 5
4 >>> numcols = math.ceil(len(kwlist) / numrows)
5 >>> for row in range (numrows):
6 ... for col in range (0, numrows * numcols , numrows):
7 ... kw = kwlist [row+col] if row+col < len(kwlist) else ''
8 ... print (f'{kw : <12} ', end='')
9 ... print ()

10 ...
11 False assert continue except if nonlocal return
12 None async def finally import not try
13 True await del for in or while
14 and break elif from is pass with
15 as class else global lambda raise yield

Active Review
▶ What happens when you execute this assignment statement?
1 >>> class = " Professional Python "

▶ What happens if you use print as a variable name?
▶ How can you fix it?

8 / 13

Python is Dynamically Typed

Python is dynamically typed, meaning that types are not resolved until run-time. This
means two things practically:

1. Values have types, variables don’t:
1 >> a = 1
2 >>> type(a)
3 <class 'int '>
4 >>> a = 1.1 # would be disallowed in a statically typed language
5 >>> type(a)
6 <class 'float '>

2. Python doesn’t report type errors until run-time. We’ll see many examples of this
fact.

9 / 13

Aside: The Sizes of Types
One of the convenient things about Python is that you don’t have to worry about
overflow or underflow1. For example, as in mathematics, the set int is unbounded:

1 >>> import sys
2 >>> x = sys. maxsize
3 >>> x
4 9223372036854775807 # That 's ~ 9.2 quintillion , i.e., 9.2e+18
5 >>> x = x + 1
6 >>> x
7 9223372036854775808
8 >>>

But you should consider sys.maxsize, the word size of your processor (64 bits in this
example, since sys.maxsize = 263 − 1), to be the practical limit, because it’s the
theoretical limit 2 of addressable RAM and thus the largest possible (but certainly
impractical) array you could store in main memory and therefore, as you’ll learn later,
the largest possible list index.
In many other programming languages, size limits can crop up in sometimes amusing
ways, Gangnam Style!

1In regular Python you don’t have to worry about type size limits, but in scientific Python, which
relies on libraries written in C, C++ and Fortran you do.

2Not strictly true, but practically true.
10 / 13

https://arstechnica.com/information-technology/2014/12/gangnam-style-overflows-int_max-forces-youtube-to-go-64-bit/

Types as Sets of Operations

Types determine which operations are available on values. For example, exponentiation
is defined for numbers (like int or float):

1 >>> 2**3
2 8

. . . but not for str (string) values:
1 >>> "pie"**3
2 Traceback (most recent call last):
3 File "<stdin >", line 1, in <module >
4 TypeError : unsupported operand type(s) for ## or pow (): 'str ' and 'int '

This is the primary way to think about types in Python.

11 / 13

Overloaded Operators

Some operators are overloaded, meaning they have different meanings when applied to
different types. For example, + means addition for numbers and concatenation for
strings:

1 >>> 2 + 2
2 4
3 >>> "Yo" + "lo!"
4 'Yolo!'

* means multiplication for numbers and repetition for sequences, like strs:
1 >>> 2 * 3
2 6
3 >>> "Yo" * 3
4 'YoYoYo '
5 >>> 3 * "Yo"
6 'YoYoYo '

12 / 13

Values, Variables, and Expressions

▶ Values are the atoms of computer programs
▶ Variables are identifiers that denote values

▶ Identifiers also denote functions, classes, modules and packages
▶ Choose identifiers carefully to create beautiful, readable programs

13 / 13

