
Tour of Python

1 / 18



Tour of Python

In this lesson we’ll create two versions of a program that prints a table of corresponding
Fahrenheit and Celsius temperatures. Along the way we’ll introduce
▶ values and variables,
▶ control structures,
▶ functions, and
▶ Python scripts.

Experienced programmers will be ready to begin writing Python programs after this
lesson.
Astute readers who know C will recognize this example program from the first chapter of
Kernighan and Ritchie’s classic The C Programming Language.

2 / 18

https://www.informit.com/store/c-programming-language-9780131103627


fahrenheit_celsius_v1.py

Type the following code into your text editor, save it as fahrenheit_celsius_v1.py and run
it:

1 lower = 0
2 upper = 300
3 step = 20
4
5 print (f" Fahrenheit Celsius ")
6 print (f" ---------- -------")
7 fahr = lower
8 while fahr <= upper :
9 celsius = 5 * (fahr - 32) / 9

10 print (f"{fahr : <10} { celsius : >7.1f}")
11 fahr = fahr + step

3 / 18



Values and Variables

In the assignment statement:
1 lower = 0

▶ 0 is an int literal, that is, the textual representation of an int value in Python
source code. An int literal is a number without a decimal point. A number with a
decimal point is a float literal.

▶ lower is a variable which, after the assignment statement, reference an int object
whose value is 0.
▶ Values are strongly typed – Python will not allow type inconsistencies.
▶ Variables are dynamically typed – variables don’t come into existence until they are

assigned values and can be reassigned to values of other types; there is no variable
declaration in Python.

▶ The types of expressions are not checked until run-time.

4 / 18



Built-in Functions

print is a built-in function in Python. Functions are Callable – they are called by placing
parentheses after their names. In:

1 print (" Fahrenheit Celsius ")

▶ The str literal "Fahrenheit Celsius" is the single argument to this call to the print

function.
▶ str values can be enclosed in single or double quotes.
▶ The print function appends a newline character (\n) after its argument(s) by default.

▶ print("Fahrenheit Celsius", end='') leaves off the ending newline.

5 / 18



while Loops

while is a loop control structure which has the form:
1 while <continuation_condition >:
2 <block >

▶ while <continuation_condition>: is the header and must end with a colon, :.
▶ <block>, also called a suite in Python, is executed repeatedly while the

<continuation_condition> is “truthy” (a Pythonic word for a value that is treated like
True in a boolean context).

▶ <block> may be a single statement or sequence of statements and expressions, and
must be indented one level beyond the header, typically 4 spaces by the Python
style guide, PEP 8.
▶ Python does not use braces or begin-end markers for blocks. Indentation has semantic

meaning in Python source code and must be consistent – consistent in indentation
amount and in the characters used for indentation; you cannot mix TABs and spaces
for indentation in the same source file.

6 / 18

https://peps.python.org/pep-0008/


Active Review – while Loops

▶ Identify the components of the while loop:
1 while fahr <= upper :
2 celsius = 5 * (fahr - 32) / 9
3 print (f"{fahr : <10} { celsius : >7.1f}")
4 fahr = fahr + step

▶ Why is the loop continuation condition guaranteed to become false over successive
executions of the loop body?

▶ What happens if we change the continuation condition to fahr < upper?

7 / 18



f-Strings
1 while fahr <= upper :
2 celsius = 5 * (fahr - 32) / 9
3 print (f"{fahr : <10} { celsius : >7.1f}")
4 fahr = fahr + step

▶ 5 * (fahr - 32)/ 9 is an arithmetic expression that produces a float value due to the
float division operator, /, so celsius references a float value.

▶ f"{fahr:<10} {celsius:>7.1f}" is an f-string, short for formatted string literal. The
values of expressions enclosed within curly braces are inserted into the string.
▶ {fahr:<10} means insert a string containing the value of fahr, left-aligned within a

10-character field.
▶ {celsius:>7.1f} means insert a strings containing the value of celsius, right-aligned in

a 7-character field, formatted as a floating-point value with one digit after the decimal
point.

Active Review
▶ Experiment with the formatting of the output, e.g., different field widths,

alignments, floating-point precision.
▶ You can learn more about f-strings in the Python documentation on formatted string

literals and the format specification mini-language.
8 / 18

https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-literals
https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-literals
https://docs.python.org/3/library/string.html#formatspec


fahrenheit_celsius_v2.py

Parts of fahrenheit_celsius_v1.py are not idiomatic, or “Pythonic”. Create a new version,
fahrenheit_celsius_v2.py:

1 import sys
2
3 def fahrenheit2celsius (f: int) -> float :
4 return 5 * (f - 32) / 9
5
6 def main(args: list[str ]) -> None:
7 # Set defaults if no args given
8 if len(args) > 1:
9 lower = int(args [1])

10 else:
11 lower = 0
12 upper = int(args [2]) if len(args) > 2 else 300
13 step = int(args [3]) if len(args) > 3 else 20
14
15 print (f" Fahrenheit Celsius ")
16 print (f" ---------- -------")
17 for f in range (lower , upper , step):
18 c = fahrenheit2celsius (f)
19 print (f"{f: <10} {c: >7.1f}")
20
21 if __name__ == '__main__ ':
22 main(sys.argv)

9 / 18

https://docs.python.org/3/glossary.html


Program Structure
1 import sys
2
3 def fahrenheit2celsius (f: int) -> float :
4 return 5 * (f - 32) / 9
5
6 def main(args: list[str ]) -> None:
7 # Set defaults if no args given
8 if len(args) > 1:
9 lower = int(args [1])

10 else:
11 lower = 0
12 upper = int(args [2]) if len(args) > 2 else 300
13 step = int(args [3]) if len(args) > 3 else 20
14
15 print (f" Fahrenheit Celsius ")
16 print (f" ---------- -------")
17 for f in range (lower , upper , step):
18 c = fahrenheit2celsius (f)
19 print (f"{f: <10} {c: >7.1f}")
20
21 if __name__ == '__main__ ':
22 main(sys.argv)

10 / 18



Imports and if __name__=='__main__'

To use members of the sys module, we must first import it:
1 import sys

We then use sys.argv in the if __name__=='__main__' block.
1 if __name__ == '__main__ ':
2 main(sys.argv)

Every .py file whose base name is a legal Python identifier is a Python module. As we’ll
learn in the lesson on modules and programs, the if __name__=='__main__' block is the
starting point of a script, and is ignored when a module is imported.

11 / 18



Functions and Type Annotations

In the function header:
1 def main(args: list[str ]) -> None:

▶ def is a keyword marking a function definition.
▶ main is the name of the function.
▶ args is the name of the single function parameter.
▶ : list[str] is a type annotation that conveys to the programmer that args should be

a list of strs. It is ignored by the Python interpreter.
▶ -> None means that main returns None when called.

Using built-in generic type annotations such as list[str] is new in Python 3.9. You’ll still
see code (possibly in this course!) that uses the older List[str] from the typing module.

12 / 18

https://docs.python.org/3.9/whatsnew/3.9.html#type-hinting-generics-in-standard-collections


Function Calls

When main is called:
1 if __name__ == '__main__ ':
2 main(sys.argv)

▶ Control is transferred to the first statement inside the main function.
▶ args becomes an alias for sys.argv in the main function. Formally, sys.argv is an

argument or actual parameter and args is a parameter. In Python people often use
argument to refer to both.

13 / 18



Command-Line Arguments
sys.argv is a list[str] containing the command-line arguments to the python3 program.
In the script invocation:

1 python3 fahrenheit_celsius_v2 .py 30 100 10

sys.argv has the value ['fahrenheit_celsius_v2.py', '30', '100', '10']

Note that all the elements of sys.argv are strs. If we want to treat any of them as a
different data type, we must convert them, as we do in:

1 lower = int(args [1])

The int() constructor parses the str contained in args[1] and, if it’s a valid textual
representation of an int, returns the int value.
Active Review
▶ Run your fahrenheit_celsius_v2.py script from your OS command-line shell with

different values for lower, upper, and step.
▶ You will need to run it from the OS shell so that you can provide command-line

arguments. You can use your terminal, or you can open an OS shell within PyCharm
with OPT-F12 on macOS, or ALT-F12 on Linux or Windows.

▶ Can you provide command-line arguments for some of the parameters of the script but
not others? Which combinations of arguments can you provide on the command-line?

14 / 18



if-else Statements

In the if-else statement:
1 if len(args) > 1:
2 lower = int(args [1])
3 else:
4 lower = 0

▶ The len(args) function returns the length of the args list. Note that sys.argv always
has the name of the Ptyhon script file as its first element, sys.argv[0], so its length
is always ≥ 1.

▶ len(args)> 1 has the value True if at least one command-line argument was given.
▶ If len(args)> 1 is True, the if suite is executed, otherwise the else suite is executed.

15 / 18



if-else Expressions

if-else expressions have the form:
1 <value1 > if <condition > else <value2 >

It has the value <value> if <condition> is truthy, and <value2> if <condition> is falsey.
The expression:

1 upper = int(args [2]) if len(args) > 2 else 300

is an idiomatic way to give upper a default value if one is not provided on the command
line.

16 / 18



For Statements and range Objects

1 for f in range (lower , upper , step):
2 c = fahrenheit2celsius (f)
3 print (f"{f: <10} {c: >7.1f}")

▶ A range object is an iterator that produces successive ints from lower to upper, not
including upper, in increments of step.
▶ E.g., range(0, 10, 2) would produce 0, 2, 4, 6, 8.

▶ A for statement produces a loop in which the loop variable, f in this example,
assumes the values produced by the iterator after in in successive executions of the
for statement body.

Active Review
▶ Run your updated fahrenheit_celsius_v2.py. What is the last Fahrenheit value in the

table?
▶ Is our updated version a faithful refactoring (redesign which preserves the behavior

of the original program) of the original program?
▶ How could we modify the new version to match the behavior of the original version?

17 / 18



Conclusion

When learning or using any language, you need to be familiar with two things: the
language specification, and the standard library. As you learn and use Python, keep
these links close at hand:
▶ docs.python.org
▶ The Python Language Reference

▶ You may find The Python Tutorial a more pleasant coverage of the language.
▶ The Python Standard Library

In the remaining lessons in this course we’ll take a deeper dive into all the things we
learned in this lesson and more.

18 / 18

https://docs.python.org/3/
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/library/index.html

