
Strings

1 / 13

Strings

Three ways to define string literals:
▶ with single quotes: ‘Ni!’
▶ double quotes: “Ni!”
▶ Or with triples of either single or double quotes, which creates

a multi-line string:
1 >>> """I do HTML for them all ,
2 ... even made a home page for my dog."""
3 'I do HTML for them all ,\ neven made a home page for my

dog.'

2 / 13

Strings

Note that the REPL echoes the value with a \n to represent the
newline character. Use the print function to get your intended
output:

1 >>> nerdy = """I do HTML for them all ,
2 ... even made a home page for my dog."""
3 >>> nerdy
4 'I do HTML for them all ,\ neven made a home page for my dog.'
5 >>> print (nerdy)
6 I do HTML for them all ,
7 even made a home page for my dog.

That’s pretty nerdy.

3 / 13

http://braverhund.com

Strings

Choice of quote character is usually a matter of taste, but the
choice can sometimes buy convenience. If your string contains a
quote character you can either escape it:

1 >>> journey = 'Don\'t stop believing .'

or use the other quote character:
1 >>> journey = "Don 't stop believing ."

▶ How does Python represent the value of the variable journey ?

4 / 13

String Operations
Because strings are sequences we can get a string’s length with
len():

1 >>> i = "team"
2 >>> len(i)
3 4

and access characters in the string by index (offset from beginning –
first index is 0) using []:

1 >>> i[1]
2 'e'

Note that the result of an index access is a string:
1 >>> type(i[1])
2 <class 'str '>
3 >>> i[3] + i[1]
4 'me '
5 >>> i[-1] + i[1] # Note that a negative index goes from the

end
6 'me '

▶ What is the index of the first character of a string?
▶ What is the index of the last character of a string? 5 / 13

String Slicing

[:end] gets the first characters up to but not including end

1 >>> al_gore = " manbearpig "
2 >>> al_gore [:3]
3 'man '

[begin:end] gets the characters from begin up to but not including
end

1 >>> al_gore [3:7]
2 'bear '

[begin:] gets the characters from begin to the end of the string
1 >>> al_gore [7:]
2 'pig '
3 >>>

▶ What is the relationship between the ending index of a slice
and the beginning index of a slice beginning right after the first
slice?

6 / 13

String Methods

str is a class (you’ll learn about classes later) with many methods (a
method is a function that is part of an object). Invoke a method on
a string using the dot operator.
str.find(substr) returns the index of the first occurence of substr in
str

1 >>> 'foobar '.find('o')
2 1

▶ Write a string slice expression that returns the username from
an email address, e.g., for ‘bob@aol.com’ it returns ‘bob’.

▶ Write a string slice expression that returns the host name from
an email address, e.g., for ‘bob@aol.com’ it returns ‘aol.com’.

7 / 13

String Interpolation with %

The old-style (2.X) string format operator, %, takes a string with
format specifiers on the left, and a single value or tuple of values on
the right, and substitutes the values into the string according to the
conversion rules in the format specifiers. For example:

1 >>> "%d %s %s %s %f" % (6, 'Easy ', 'Pieces ', 'of ', 3.14)
2 '6 Easy Pieces of 3.140000 '

Here are the conversion rules:
▶ %s string
▶ %d decimal integer
▶ %x hex integer
▶ %o octal integer
▶ %f decimal float
▶ %e exponential float
▶ %g decimal or exponential float
▶ %% a literal

8 / 13

String Formatting with %

Specify field widths with a number between % and conversion rule:
1 >>> sunbowl2012 = [('Georgia Tech ', 21) , ('USC ', 7)]
2 >>> for team in sunbowl2012 :
3 ... print ('%14s %2d' % team)
4 ...
5 Georgia Tech 21
6 USC 7

Fields right-aligned by default. Left-align with - in front of field
width:

1 >>> for team in sunbowl2012 :
2 ... print ('% -14s %2d' % team)
3 ...
4 Georgia Tech 21
5 USC 7

Specify n significant digits for floats with a .n after the field width:
1 >>> '%5.2f' % math.pi
2 ' 3.14 '

Notice that the field width indludes the decimal point and output is
left-padded with spaces 9 / 13

String Interpolation with str.format()

Python 3.0 - 3.5 interpolation was done with the string method
format:

1 >>> "{} {} {} {} {}". format (6, 'Easy ', 'Pieces ', 'of ', 3.14)
2 '6 Easy Pieces of 3.14 '

Old-style formats only resolve arguments by position. New-style
formats can take values from any position by putting the position
number in the {} (positions start with 0):

1 >>> "{4} {3} {2} {1} {0}". format (6, 'Easy ', 'Pieces ', 'of ',
3.14)

2 '3.14 of Pieces Easy 6'

Can also use named arguments, like functions:
1 >>> "{ count } pieces of {kind} pie". format (kind='punkin ',

count =3)
2 '3 pieces of punkin pie '

Or dictionaries (note that there’s one dict argument, number 0):
1 >>> "{0[count]} pieces of {0[kind]}

pie". format ({ 'kind ':'punkin ',
2 'count ':3})
3 '3 pieces of punkin pie '

10 / 13

String Formatting with str.format()

Conversion types appear after a colon:
1 >>> "{:d} {} {} {} {:f}". format (6, 'Easy ', 'Pieces ', 'of ',

3.14)
2 '6 Easy Pieces of 3.140000 '

Argument names can appear before the :, and field formatters
appear between the : and the conversion specifier (note the < and
> for left and right alignment):

1 >>> for team in sunbowl2012 :
2 ... print ('{: <14s} {: >2d}'. format (team [0] , team [1]))
3 ...
4 Georgia Tech 21
5 USC 7

You can also unpack the tuple to supply its elements as individual
arguments to format (or any function) by prepending tuple with *:

1 >>> for team in sunbowl2012 :
2 ... print ('{: <14s} {: >2d}'. format (* team))
3 ...
4 Georgia Tech 21
5 USC 7

11 / 13

f-Strings

Python 3.6 introduced a much more convenient inline string
interpolator. Prepend f to the opening quote, enclose arbitrary
Python expressions in culy braces ({}), and put formatters similar to
str.format() after colons.

1 >>> for team , score in sunbowl2012 : # Tuple - unpacking
assignment

2 ... print (f'{team : <14s} { score :>2d}')
3 ...
4 Georgia Tech 21
5 USC 7

12 / 13

Conclusion

Your turn:
▶ Try Exercise 1 listed in the schedule for today’s lesson.

13 / 13

