
Modules and Programs

1 / 13

Python Programs

Python code organized in
▶ modules,
▶ packages, and
▶ scripts.

We’ve already used some modules, now we’ll learn what they are, how to write our own
modules, and the relationship between modules and programs.

2 / 13

Importing Modules

To import a module means to get names from the module into scope, or add them to a
namespace. When you import a module, you can access the module’s members with the
dot operator.

1 >>> import math # Adds the math module to the current namespace
2 >>> math.sqrt (64) # Uses the sqrt function from the math module
3 8.0

You can also import a module and give it an alias: import <module> as <local-name>

1 >>> import math as m
2 >>> m.sqrt (64)
3 8.0

3 / 13

Importing into Local Scope

Importing brings names into the scope of the import. Here we import the math module
into the scope of a single function:

1 >>> def hypotenuse (a, b):
2 ... import math
3 ... return math.sqrt(a*a + b*b)
4 ...
5 >>> hypotenuse (3, 4)
6 5.0

But it’s not available at the top level.
1 >>> math.sqrt (64)
2 Traceback (most recent call last):
3 File "<stdin >", line 1, in <module >
4 NameError : name 'math ' is not defined

4 / 13

Importing Names from a Module

You can choose to import only certain names from a module:
1 >>> from math import sqrt
2 >>> sqrt (64)
3 8.0
4 >>> floor (1.2)
5 Traceback (most recent call last):
6 File "<stdin >", line 1, in <module >
7 NameError : name 'floor ' is not defined

Or all names from a module:
1 >>> from math import *
2 >>> floor (1.2)
3 1
4 >>> sin (0)
5 0.0
6 >>> sin (.5 * pi)
7 1.0

Using this syntax adds the names from the module to your namespace so that you don’t
have to use a fully-qualified name, e.g., you can say sqrt(64) instead of math.sqrt(64).

5 / 13

Namespace Pollution

It’s usually better to import modules and access their members with dot notation. When
you import ... from .. from several modules, especially if you use *, you “pollute” your
namespace with many names and potentially cause problems.

Active Review
Evaluate the following, in order, in a Python REPL:
▶ from logging import *
▶ log(WARN, 'A log message')
▶ from math import *
▶ log(WARN, 'A log message')

What happened?

6 / 13

Writing Python Modules
A Python module is text file ending in .py – this is why you should always name your
Python source files with a .py ending. A module typically includes classes, functions and
variables.

Active Review
Save the following code in a file named arithmetic.py:

1 def add(a: int , b: int) -> int:
2 return a + b
3
4 def sub(a: int , b: int) -> int:
5 return a - b
6
7 def mul(a: int , b: int) -> int:
8 return a * b
9

10 def div(a: int , b: int) -> int:
11 return a / b

▶ In your Python REPL, evaluate import arithemtic.
▶ Did you get an error? What caused the error?

▶ If you got an error when you tried to import your arithmetic module, fix it.
▶ Now use functions from your arithmetic module to make sure it works.

7 / 13

Python Scripts

A Python script is any text file containing executable Python code. Our hello.py script
from Day 1 is an example of a Python script. Note that a module can be a Python script
if it contains code that executes whenever the module is run by the Python interpreter.

Active Review
▶ Run arithmetic.py as a script by entering python3 arithmetic.py in your OS command

shell.
▶ What happened?

▶ Add the following to the bottom of your arithmetic.py file:
1 import sys
2 ops = {'+': add , '-': sub , '*': mult , '/': div}
3 op = ops[sys.argv [2]]
4 print (op(int(sys.arg [1]) , int(sys.arg [2])))

▶ Run arithmetic.py with python3 arithmetic.py 6 + 2.
▶ Restart your Python REPL and import your arithmetic module.

▶ What happened?

8 / 13

if __name__ == '__main__'

To make a module a script that only evaluates definitions when imported and only runs
the “script” parts when run by the Python interpreter, include an
if __name__ == '__main__' block at the bottom. The code in the if __name__ == '__main__'

block will only execute when the module is run as a script.

Active Review
▶ Replace the free-standing code at the bottom of your arithmetic.py file with this

(adding ‘if name==‘main’: above and indenting suite):
1 if __name__ == '__main__ ':
2 import sys
3 ops = {'+': add , '-': sub , '*': mult , '/': div}
4 op = ops[sys.argv [2]]
5 print (op(int(sys.arg [1]) , int(sys.arg [2])))

▶ Run arithmetic.py in “script mode” with python3 arithmetic.py.
▶ What happened?

▶ Run arithmetic.py with python3 arithmetic.py 6 + 2.
▶ Run arithmetic.py with python3 arithmetic.py 6 / 2.
▶ Run arithmetic.py with python3 arithmetic.py 6 * 2.

▶ What happened?

9 / 13

Shebang!

Another way to run a Python program (on Unix) is to tell the host operating system how
to run it. We do that with a “shebang” line at the beginning of a Python program:

1 #!/ usr/bin/env python3

This line says “run python3 and pass this file as an argument.” So if you have a script in
foo.py with shebang line as above and which has been set executable (chmod +x foo.py),
these are equivalent:

1 $ python3 foo.py
2 $./ foo.py

Notes: - This form of the shebang line (#!/usr/bin/env...) also works on Windows. - You
can specify a more specific version of Python, e.g., #!/usr/bin/env python3.10.

10 / 13

https://docs.python.org/3/using/windows.html#shebang-lines

Command-line Arguments

When you run a Python program, Python collects the arguments to the program in a
variable called sys.argv. Given a Python program (arguments.py):

1 #!/ usr/bin/env python3
2 import sys
3
4 print (sys.argv)
5
6 if len(sys.argv) < 2:
7 print ("You 've given me nothing to work with.")
8 else:
9 print (sys.argv [1] +"? Well I disagree !")

1 $./ arguments .py Pickles
2 Pickles ? Well I disagree !
3 $./ arguments .py
4 You've given me nothing to work with.

11 / 13

Interactive Programs

The input() function Python reads all the characters typed into the console until the
user presses ENTER and returns them as a string:

1 >>> x = input ()
2 abcdefg1234567
3 >>> x
4 'abcdefg1234567 '

We can also supply a prompt for the user:
1 >>> input ('Give me a number : ')
2 Give me a number : 3
3 '3'

And remember, input() returns a string that may need to be converted.
1 >>> 2 * int(input ("Give me a number and I'll double it: "))
2 Give me a number and I'll double it: 3
3 6

12 / 13

Conclusion

▶ Be careful to distinguish between a Python REPL prompt, and an OS command
shell prompt.
Typical macOS/Linux/Unix command shell:

1 drcs@horand ~ $

Typical Windows Powershell:
1 PS C:>

Python REPL:
1 >>>

iPython REPL:
1 In [1]:

▶ Follow if __name__=='__main__' and main function conventions when writing scripts.

13 / 13

