Modules and Programs

1/13



Python Programs

Python code organized in

> modules,
» packages, and
P scripts.

We've already used some modules, now we'll learn what they are, how to write our own
modules, and the relationship between modules and programs.

2 /1%



Importing Modules

To import @ module means to get names from the module into scope, or add them to a
namespace. When you import a module, you can access the module’s members with the
dot operator.

1 | >>> import math # Adds the math module to the current namespace
>>> math.sqrt (64) # Uses the sqrt function from the math module
3 18.0

N

You can also import a module and give it an alias: import <module> as <local-name>

1 | >>> import math as m
>>> m.sqrt (64)
3 /8.0

N

2/1%



Importing into Local Scope

DO~ WN =

S~ W=

Importing brings names into the scope of the import. Here we import the math module

into the scope of a single function:

>>> def hypotenuse(a, b):
import math
return math.sqrt(a*a + b*b)

>>> hypotenuse (3, 4)
5.0

But it’s not available at the top level.

>>> math.sqrt (64)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'math' is not defined

4/13



Importing Names from a Module

You can choose to import only certain names from a module:

>>> from math import sqrt

>>> sqrt (64)

8.0

>>> floor (1.2)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'floor' is not defined

~NOoO O~ WN

Or all names from a module:

>>> from math import *
>>> floor (1.2)

1

>>> sin (0)

0.0

>>> sin(.5 * pi)

1.0

~NOoO A WN

Using this syntax adds the names from the module to your namespace so that you don't
have to use a fully-qualified name, e.g., you can say sqrt(64) instead of math.sqrt(64).

5/1%



Namespace Pollution

It's usually better to import modules and access their members with dot notation. When
You import ... from .. from several modules, especially if you use *, you “pollute” your
namespace with many names and potentially cause problems.

Active Review
Evaluate the following, in order, in a Python REPL:
» from logging import *
P> 1og(WARN, 'A log message')
» from math import *
P 1og(WARN, 'A log message')
What happened?

6/12



Writing Python Modules

=

HOWOWWLONOOAWNK

A Python module is text file ending in .py — this is why you should always name your
Python source files with a .py ending. A module typically includes classes, functions and
variables.

Active Review
Save the following code in a file named arithmetic.py:

def add(a: int, b: int) -> int:
return a + b
def sub(a: int, b: int) -> int:
return a - b
def mul(a: int, b: int) -> int:
return a * b
def div(a: int, b: int) -> int:
return a / b
» In your Python REPL, evaluate import arithemtic.

» Did you get an error? What caused the error?
If you got an error when you tried to import your arithmetic module, fix it.
Now use functions from your arithmetic module to make sure it works.

7 /1%



Python Scripts

A Python script is any text file containing executable Python code. Our neilo.py script
from Day 1 is an example of a Python script. Note that a module can be a Python script
if it contains code that executes whenever the module is run by the Python interpreter.

Active Review

>

A OOWNR v

vy

Run arithmetic.py as a script by entering python3 arithmetic.py in your OS command

shell.
» What happened?
Add the following to the bottom of your arithmetic.py file:

import sys

ops = {'+': add, '-': sub, 'x': mult, '/': div}
op = opslsys.argv[2]]

print (op(int (sys.argl[1]), int(sys.argl2])))

Run arithmetic.py with python3 arithmetic.py 6 + 2.

Restart your Python REPL and import your arithmetic module.

» What happened?

/1%



if __name__ == '__main__'

To make a module a script that only evaluates definitions when imported and only runs
the “script” parts when run by the Python interpreter, include an

__ == '__main__' block at the bottom. The code in the if __name__ == '__main__°
block will only execute when the module is run as a script.

if __name

Active Review
» Replace the free-standing code at the bottom of your arithmetic.py file with this
(adding 'if name=='main’: above and indenting suite):

if __name__ == '__main__
import sys
ops = {'+': add, '-': sub, 's': mult, '/': div}

op = opsl[sys.argv[2]]
print (op(int(sys.arg[1]), int(sys.argl2]1)))

GO WN -

» Run arithmetic.py in “script mode” with python3 arithmetic.py.
» What happened?

> Run arithmetic.py with python3 arithmetic.py 6 + 2.

> Run arithmetic.py with python3 arithmetic.py 6 / 2.

> Run arithmetic.py with python3 arithmetic.py 6 * 2.
» What happened?

/1%



Shebang!

Another way to run a Python program (on Unix) is to tell the host operating system how
to run it. We do that with a “shebang” line at the beginning of a Python program:
1 |#!/usr/bin/env python3

This line says “run python3 and pass this file as an argument.” So if you have a script in

foo.py With shebang line as above and which has been set executable (chmod +x foo.py),
these are equivalent:

[uny

$ python3 foo.py
2 |$ ./foo.py

Notes: - This form of the shebang line (#!/usr/bin/env...) also works on Windows. - You
can specify a more specific version of Python, e.g., #!/usr/bin/env python3.10.

10 /13


https://docs.python.org/3/using/windows.html#shebang-lines

Command-line Arguments

OO ~NOOOA~ WN -

S~ W=

When you run a Python program, Python collects the arguments to the program in a
variable called sys.argv. Given a Python program (arguments.py):

#!/usr/bin/env python3
import sys

print (sys.argv)

if len(sys.argv) < 2:

print ("You've given me nothing to work with.")
else:

print (sys.argv[1] +"? Well I disagree!")

$ ./arguments.py Pickles

Pickles? Well I disagree!

$ ./arguments.py

You've given me nothing to work with.

11 /13



Interactive Programs

N A WN

N

The input() function Python reads all the characters typed into the console until the
user presses ENTER and returns them as a string:

>>> x = input ()
abcdefgl1234567
>>> x
'abcdefgl1234567"'

We can also supply a prompt for the user:

>>> input('Give me a number: ')
Give me a number: 3
l3|

And remember, input() returns a string that may need to be converted.

>>> 2 x int(input("Give me a number and I'll double it:

Give me a number and I'll double it: 3
6

")

12 /13



Conclusion

» Be careful to distinguish between a Python REPL prompt, and an OS command
shell prompt.

Typical macOS/Linux/Unix command shell:

1

drcs@horand ~ $ ‘

Typical Windows Powershell:

1 ’PS C:> ‘
Python REPL:

1 ’>>> ‘
iPython REPL:

ST |

» Follow if __name__=='__main__' and main function conventions when writing scripts.

123 /13



