
Introduction to Professional Python

1 / 18

Professional Python

▶ Faced-paced coverage of core Python.
▶ Assumes you know programming principles, not necessarily in Python
▶ Goes deeper into the Python language than a Python-based CS1 course
▶ The video for each lesson is about 30 minutes.

▶ Each lesson should take you 45-60 minutes if you pause the video and do the active
reviews when asked.

▶ Each exercise should take you an hour or less.
▶ Projects should take you two to 10 hours.

If you do each lesson – watching the video and pausing to do the active reviews – and at
least one exercise after each lesson, you will have a firm grasp of Python. Doing the
projects as well will make you an even stronger Python programmer ready to join a
professional team as a junior programmer.
▶ Altogether this course should take you 20 to 40 hours.

2 / 18

Python gives you wings!

Figure 1: Python Wings

http://xkcd.com/353/
3 / 18

The Python Language

▶ Python is a general-purpose programming language, meaning you can write any
kind of program in Python
▶ A domain-specific language is designed for one application. E.g., SQL is just for

manipulating relational databases.
▶ Python is interpreted, meaning you can run programs directly after you write them;

you don’t have to compile programs to some intermediate form for the operating
system or a virtual machine to execute.

▶ Python is a great “glue” language; Python programs often bring together disparate
components to do a coherent task.
▶ One particular kind of glue is Python’s killer feature for data science: easy to create

Python bindings for libraries written in other languages
▶ Data science libraries, e.g., NumPy, TensorFlow, are written high-performance

languages like C and C++
▶ Python provides a more comfortable way to use high-performance libraries

The coolest thing about Python . . .

4 / 18

https://www.python.org/doc/essays/omg-darpa-mcc-position/

The Python Name

Figure 2: Flying Circus

https://en.wikipedia.org/w/index.php?curid=6130072
Python was named for Monty Python, of which Python’s creator, Guido van Rossum, is
a big fan. You don’t have to be a fan, but it helps.

5 / 18

https://en.wikipedia.org/w/index.php?curid=6130072
https://docs.python.org/3/faq/general.html#do-i-have-to-like-monty-python-s-flying-circus

The python3 Program

Practically speaking, Python is a program on your computer that interprets Python
programs and statements.
▶ You can ask python3 a question without running any Python code. For example, this

is how you ask which version of Python is installed (Note: the $ character is the
command prompt in the Unix Bash shell. The Windows command prompt is C:\>.):

1 $ python3 --version
2 Python 3.8.10

If you get some other response, like command not found, then you haven’t properly
installed Python.

6 / 18

Executing Python Code
Three common ways to run Python code:

1. Scripts – files containing Python code – executed on the command line:
1 $ python3 myprogram .py

2. Execute statements and expressions in the Python shell/interactive interpreter
(commonly called a REPL for “Read-Eval-Print Loop”):

1 $ python3
2 Python 3.8.10 (default , Jun 2 2021 , 10:49:15)
3 [GCC 9.4.0] on linux
4 Type "help", " copyright ", " credits " or " license " for more information .
5 >>> "Hello , world !"
6 'Hello , world !'

To exit the Python shell type exit() and hit return, or type Ctrl-D on Linux/Unix, or
Ctrl-Z on Windows.

3. In Jupyter Notebooks, which we’ll use in the Data Manipulation course.
You can also run short Python code snippets on the command line using the -c option:

1 $ python3 -c " print (2 + 3)"
2 5

7 / 18

Hello, Python

Since Kernighan and Ritchie’s The C Programming Language it’s customary for your
first program in a new language to be “Hello, world!” We’ll keep that tradition.

Active Review
▶ Create a new file named hello.py and add the following line to it, and save it:
1 print ("Hello , world !")

▶ Then open your OS command shell (terminal – not a Python REPL), go to the
directory where you saved hello.py and enter:

1 $ python3 hello .py

Hello, world! will be printed to the console on the next line.

8 / 18

The Python REPL

Invoke the Python interactive shell by entering python3 at your command shell’s prompt
without any arguments:

1 $ python3
2 Python 3.8.10 (default , Jun 2 2021 , 10:49:15)
3 [GCC 9.4.0] on linux
4 Type "help", " copyright ", " credits " or " license " for more information .
5 >>>

>>> is the command prompt for the Python REPL.
▶ REPL stands for Read Eval Print Loop:

1. Read an expression or statement at the command prompt,
2. Evaluate the expression or execute the statement,
3. Print the result to the console, and
4. Loop back to Read step

We’ll spend a lot of time in the REPL, but since this course is intended as a fast-paced
introduction to Python for professional programmers, we’ll use the iPython REPL.

9 / 18

https://ipython.org/

iPython

Two modes:
1. Interactive shell
▶ Replacement for python3 REPL
2. Jupyter notebook kernel
▶ Interactive web-based documents mixing text, executable code, graphics

In this course we’ll only use iPython as a REPL. Since iPython is a third-party package,
we need to install it before we can use it. Enter this on your OS shell’s command line
(not Python REPL):

1 pip3 install ipython

We’ll learn about pip3 in the lesson on modules and programs.

10 / 18

iPython Shell History
Active Review
In your OS command shell, run ipython and type in the following (on the In lines) to get
a feel for using iPython.

1 In [1]: ['Sage ', 'Thyme ', 'Oregano ', 'Posh ']
2 Out [1]: ['Sage ', 'Thyme ', 'Oregano ', 'Posh ']
3
4 In [2]: type(In [1])
5 Out [2]: str
6
7 In [3]: type(Out [1])
8 Out [3]: list
9

10 In [4]: spices = Out [1]
11
12 In [5]: spices
13 Out [5]: ['Sage ', 'Thyme ', 'Oregano ', 'Posh ']
14
15 In [6]: spices is Out [1]
16 Out [6]: True

Notice that every input is contained in the In list, and every output is contained in the
Out dictionary.

11 / 18

iPython Help

Single ? gives abbreviated version of python’s help

1 In [7]: def add(a, b):
2 ...: """ Return the result of + operation on a and b"""
3 ...: return a + b
4 ...:
5 In [8]: add?
6 Signature : add(a, b)
7 Docstring : Return the result of + operation on a and b
8 File: `/ cs2316 /<ipython -input -7- af5293282e78 >
9 Type: function

Double ?? gives source code, if available.
1 In [9]: add ??
2 Signature : add(a, b)
3 Source :
4 def add(a, b):
5 """ Return the result of + operation on a and b"""
6 return a + b
7 File: `/ cs2316 /<ipython -input -7- af5293282e78 >
8 Type: function

12 / 18

iPython Magic Commands
Special commands provided by iPython, prepended by %.
▶ Run a Python script from within iPython:

1 In [35]: %run people .py
2 [<Stan , 2008 -08 -13 , 150cm , 45kg >,
3 <Kyle , 2008 -02 -25 , 160cm , 50kg >,
4 <Cartman , 2008 -05 -26 , 140cm , 100kg >,
5 <Kenny , 2009 -07 -30 , 130cm , 40kg >]

▶ Get help with a magic command with ?

1 In [2]: %cd?
2 Docstring :
3 Change the current working directory .
4
5 (content elided)
6
7 Usage :
8
9 cd 'dir ': changes to directory 'dir '.

10 (additional output elided)

Get a list of all magic commands with %lsmagic

13 / 18

iPython Shell Commands

Run shell commands by prepending with a !

1 In [27]: !ls *. py
2 fun.py grades .py maths .py people .py pp.py
3
4 In [28]: pyscripts = !ls *. py
5
6 In [29]: pyscripts
7 Out [29]: ['fun.py ', 'grades .py ', 'maths .py ', 'people .py ', 'pp.py ']

iPython provides magic commands for most common shell commands.

14 / 18

iPython Directory Bookmarking

Great time saving feature.
1 In [1]: pwd
2 Out [1]: '/ Users / chris /vcs/ github .com/ drcscodes /drcs.codes - solutions '
3
4 In [2]: % bookmark drcs.codes - solutions

'/ Users / chris /vcs/ github .com/ drcscodes /drcs.codes - solutions '
5
6 In [3]: cd
7 / Users / chris
8
9 In [4]: cd drcs.codes - solutions

10 (bookmark :drcs.codes - solutions) ->
/ Users / chris /vcs/ github .com/ drcscodes /drcs.codes - solutions

11 / Users / chris /vcs/ github .com/ drcscodes /drcs.codes - solutions

15 / 18

iPython Automagic commands

With automagic turned on, some shell commands can be run as if they were built into
iPython:

1 In [22]: pwd
2 Out [22]: '/ Users / chris / cs2316 '
3
4 In [23]: ls *. py
5 fun.py grades .py maths .py people .py pp.py

▶ Toggle automagic on and off with %automagic.
▶ These commands work with automagic:

▶ %cd, %cat, %cp, %env, %ls, %man, %mkdir, %more, %mv, %pwd, %rm, and %rmdir

16 / 18

%doctest_mode

iPython is nicer than the Python.org REPL, but doctests use the Python.org REPL
prompt. For writing doctest examples, iPython offers the %doctest_mode magic.

1 In [93]: def dubbel (x: int) -> int:
2 ...: return x * 2
3 ...:
4
5 In [94]: % doctest_mode
6 Exception reporting mode: Plain
7 Doctest mode is: ON
8 >>> dubbel (3)
9 6

10 >>> % doctest_mode
11 Exception reporting mode: Context
12 Doctest mode is: OFF
13
14 In [97]:

17 / 18

Conclusion

▶ Python is an interpreted general purpose language.
▶ Python code can be run as programs or interactively in a Python REPL.
▶ Python is a great glue language.
▶ Python is fun!

18 / 18

