
Functions

1 / 14

Functions

A function is a reusable block of code. Functions
▶ have names (usually),
▶ contain a sequence of statements, and
▶ return values, either explicitly or implicitly.

We’ve already seen functions in our tour of Python. In this lesson we’ll dive deeper.

2 / 14

Defining Functions

The general form of a function definition is
1 def <function_name >(< parameter_list >):
2 <function_body >

▶ The first line is called the header.
▶ function_name is the name you use to call the function.
▶ parameter_list is a list of parameters to the function, which may be empty.
▶ function_body (also called a suite in Python) is a sequence of expressions and

statements.

3 / 14

Python Scopes

▶ Global x and the local x inside f are different.
▶ print, referenced inside f, is from the builtins namespace.

4 / 14

Python Scope Resolution

Scopes are determined statically but used dynamically. Python determines the value of a
variable by searching scopes in the following order (LEGB):

1. Local
2. Enclosing (for nested functions)
3. Global
4. Builtins

Each scope is a namespace, a.k.a. environment or context. Namespaces can be thought
of as dictionaries that map (variable) names to values.

Active Review
▶ Evaluate globals() in the python3 REPL (not iPython).
▶ Evaluate dir().
▶ Evaluate set(globals().keys())== set(dir())
▶ Import the math module.
▶ Evaluate dir(math) in your Python REPL.

5 / 14

Active Review: Python Scope Resolution
Apply the LEGB rule in the following exercises:
▶ Enter and run the following program. What happens?
1 def f():
2 print (x)
3 x = 2
4
5 def g(x):
6 print (x)
7
8 if __name__ == '__main__ ':
9 x = 1

10 f()
11 g(x)

▶ Comment-out the x = 1 in the if __name__=='__main__' block and x = 2 line in def f().
Explain the program’s behavior.

▶ Uncomment the x = 1 and leave the x = 2 line in def f() commented-out. Explain
the program’s new behavior.

▶ Uncomment the x = 2 and add global x as the first line def f(). Explain the
program’s new behavior.

6 / 14

Positional and Keyword Arguments

Thus far we’ve called functions using positional arguments, meaning that argument
values are bound to parameters in the order in which they appear in the call.

1 >>> def greet (greeting , name , number):
2 ... print ((greeting + ', ' + name) * 2)
3 ...
4 >>> greet ('Hello ', 'Dolly ', 2)
5 Hello , DollyHello , Dolly

We can also call functions with keyword arguments in any order.
1 >>> greet (greeting ='Hello ', number =2, name='Dolly ')
2 Hello , DollyHello , Dolly

If you call a function with both positional and keyword arguments, the positional ones
must come first.

7 / 14

Default Parameter Values

You can specify default parameter values so that you don’t have to provide an argument.
1 >>> def greet (greeting , name='Elmo '):
2 ... print (greeting + ', ' + name)
3 ...
4 >>> greet ('Hello ')
5 Hello , Elmo

If you provide an argument for a parameter with a default value, the parameter takes the
argument value passed in the call instead of the default value.

1 >>> greet ('Hi ', 'Guy ')
2 Hi , Guy

8 / 14

Return Values
Functions return values, which means that a function call is an expression.

1 >>> def double (num):
2 ... return num * 2
3 ...
4 >>> double (2)
5 4

If you don’t explicitly return a value, None is returned implicitly.
1 >>> def dubbel (num):
2 ... print (num * 2)
3 ...
4 >>> res = dubbel (3)
5 6
6 >>> type(res)
7 <class 'NoneType '>

Active Review
▶ Define the double and dubbel functions above.
▶ Evaluate double(2)+ double(3). Explain how it works.
▶ Evaluate dubbel(2)+ dubbel(3). Explain the result.

9 / 14

Variable Argument Lists

You can collect a variable number of positional arguments as a tuple by prepending a
parameter name with *

1 >>> def echo (* args):
2 ... print (args)
3 ...
4 >>> echo (1, 'fish ', 2, 'fish ')
5 (1, 'fish ', 2, 'fish ')

You can collect variable keyword arguments as a dictionary with **

1 >>> def print_dict (** kwargs):
2 ... print (kwargs)
3 ...
4 >>> print_dict (a=1, steak ='sauce ')
5 {'a': 1, 'steak ': 'sauce '}

10 / 14

Keyword-Only Arguments

If a function has parameters following a varargs, the remaining arguments must be
passed as keyword arguments.

Active Review
▶ Look up the documentation for the built-in print function in a Python REPL.
▶ Execute print("Hello") and note the output.
▶ Execute print("Hello", "world") and note the output.
▶ Execute print("Hello", "world", end="") and note the output.
▶ Execute print("Hello", "world", "").

▶ Why do you get the output you get?
▶ How does the documentation for print alert you to this fact?

11 / 14

Mixed Argument Lists

And you can do positional and keyword variable arguments together, but the keyword
arguments come second.

1 >>> def print_stuff (* args , ** kwargs):
2 ... print (args , kwargs)
3 ...
4 >>> print_stuff ("Pass", "the", a=1, steak ='sauce ')
5 {'a': 1, 'steak ': 'sauce '}

Active Review
▶ What happens when you evaluate
1 print_stuff ("Pass", a=1, steak ='sauce ', 'the ')

12 / 14

Inner Functions
If you only need a function inside one other function, you can declare it inside that
function to limit its scope to the function where it is used.

1 def factorial (n):
2 def fac_iter (n, accum):
3 if n <= 1: return accum
4 return fac_iter (n - 1, n * accum)
5 return fac_iter (n, 1)
6
7 >>> factorial (5)
8 120

fac_iter() is a (tail) recursive function. Recursion is important for purely functional
languages, but a practically-oriented Python-programming engineer will mostly use
iteration, higher-order functions and loops, which are more Pythonic. Any recursive
computation can be formulated as an imperative computation.
Active Review
▶ Define the factorial function above in your REPL and evaluate the following calls:
1 factorial (10)
2 factorial (100)
3 factorial (1000)
4 factorial (10000)

13 / 14

http://neopythonic.blogspot.com/2009/04/tail-recursion-elimination.html

Conclusion

▶ Functions are the primary way we break a program into reusable pieces.
▶ Python offers very flexible function call semantics.
▶ Be aware that all functions return values.

▶ If no return statement, None implicitly returned.

14 / 14

