
Functional Programming in Python

1 / 13

Functional Features in Python

Functions are first class, meaning they can be
▶ stored in variables and data structures
▶ passed as arguments to functions
▶ returned from functions

2 / 13

Higher-Order Functions

A higher order function is a function that takes another function as a parameter or
returns a function as a value. We’ve already used one:

1 >>> help(sorted)
2 ...
3 sorted (iterable , key=None , reverse = False)
4 Return a new list containing all items from the iterable in ascending
5 order .
6
7 A custom key function can be supplied to customise the sort order , and the
8 reverse flag can be set to request the result in descending order .

The second parameter, key, is a function. In general, a sort key is the part of an object
on which comparisons are made in a sorting algorithm.

3 / 13

Sorting without a key

Say we have a list of tuples, (name, gpa, major):
1 >>> from pprint import pprint
2 >>> studs = [("Stan", 2.5 , "ISyE"), ("Kyle", 2.2 , "CS"),
3 ... (" Cartman ", 2.4 , "CmpE"), (" Kenny ", 4.0 , "ME")]

The default sort order is simply elementwise by the default order for each type in the
tuple:

1 >>> pprint (sorted (studs))
2 [('Cartman ', 2.4 , 'CmpE '),
3 ('Kenny ', 4.0 , 'ME '),
4 ('Kyle ', 2.2 , 'CS '),
5 ('Stan ', 2.5 , 'ISyE ')]

Active Review
▶ What if two students had the same name?

4 / 13

Sorting with a key

If we want a different sort order, we can define a function that extracts the part of a
tuple by which we want to sort.

1 >>> def by_gpa (stud):
2 ... return stud [1]
3 ...
4 >>> pprint (sorted (studs , key= by_gpa))
5 [('Kyle ', 2.2 , 'CS '),
6 ('Cartman ', 2.4 , 'CmpE '),
7 ('Stan ', 2.5 , 'ISyE '),
8 ('Kenny ', 4.0 , 'ME ')]

sorted is a higher-order function because it takes a function as an argument.

Active Review
▶ Write a function that sorts students by major, then GPA, then name.

5 / 13

Lambda Functions

The by_gpa function is pretty simple. Instead of defining a named function, we can define
it inline with an anonymous function, a.k.a., a lambda function:

1 >>> pprint (sorted (studs , key= lambda t: t[1]))
2 [('Kyle ', 2.2 , 'CS '),
3 ('Cartman ', 2.4 , 'CmpE '),
4 ('Stan ', 2.5 , 'ISyE '),
5 ('Kenny ', 4.0 , 'ME ')]

The general form is lambda <parameter_list>: <expression>

The body of a lambda function is limited to a single expression, which is implicitly
returned.

6 / 13

map

Common task: build a sequence out of transformations of elements of an existing
sequence. Here’s the imperative approach:

1 >>> houses = [" Stark ", " Lannister ", " Targaryen "]
2 >>> shout = []
3 >>> for house in houses :
4 ... shout . append (house . upper ())
5 ...
6 >>> shout
7 ['STARK ', 'LANNISTER ', 'TARGARYEN ']

Heres’ the functional approach:
1 >>> list(map(lambda house : house . upper () , houses))
2 ['STARK ', 'LANNISTER ', 'TARGARYEN ']

map returns an iterator, which we pass to the list constructor to create a list.

7 / 13

filter

1 >>> nums = [0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9]
2 >>> filter (lambda x: x % 2 == 0, nums)
3 <filter object at 0 x1013e87f0 >
4 >>> list(filter (lambda x: x % 2 == 0, nums))
5 [0, 2, 4, 6, 8]

8 / 13

List Comprehensions

A list comprehension iterates over a (optionally filtered) sequence, applies an operation
to each element, and collects the results of these operations in a new list, just like map.

1 >>> grades = [100 , 90, 0, 80]
2 >>> [x for x in grades]
3 [100 , 90, 0, 80]
4 >>> [x + 10 for x in grades]
5 [110 , 100 , 10, 90]

We can also filter in a comprehension:
1 >>> [x + 50 for x in grades if x < 50]
2 [50]

Comprehensions are more Pythonic than using map and filter directly.

Active Review
▶ Write a list comprehension that returns the perfect squares from a list of numbers.

9 / 13

Dictionary Comprehensions

First, zip:
1 words = [" Winter is coming ", "Hear me roar", "Fire and blood "]
2 >>> list(zip(houses , words))
3 [('Stark ', 'Winter is coming '), ('Lannister ', 'Hear me roar '), ('Targaryen ',

'Fire and blood ')]

Dictionary comprehension using tuple unpacking:
1 >>> house2words = { house : words for house , words in zip(houses , words)}
2 >>> house2words
3 {'Lannister ': 'Hear me roar ', 'Stark ': 'Winter is coming ', 'Targaryen ': 'Fire

and blood '}

Of course, we could just use the dict constructor on the zip object.
1 >>> dict(zip(houses , words))
2 {'Lannister ': 'Hear me roar ', 'Stark ': 'Winter is coming ', 'Targaryen ': 'Fire

and blood '}

10 / 13

reduce

1 >>> import functools
2 >>> functools . reduce (lambda x, y: x + y, [0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9])
3 45

Confirm this using the standard sum Σn
i=1i = n(n+1)

2

Active Review
▶ Write the factorial function using reduce.

▶ factorial(0)== 1, and
▶ for n > 0, n ∈ Z, factorial(n)=

n∏
i=1

i

11 / 13

Generator Functions

Generator functions are an easy functional way to create iterators.
1 def myrange (start : int , end: int) -> int:
2 while start < end:
3 yield start
4 start += 1

1 >>> for i in myrange (0, 4):
2 ... print (i)
3 ...
4 0
5 1
6 2
7 3

Active Review
▶ Modify the myrange generator function above to include a step just like Python’s

built-in range object.

12 / 13

https://docs.python.org/3.3/library/stdtypes.html?highlight=range#ranges

Conclusion

▶ Because functions are first-class objects in Python, programming in a functional
style is possible.

▶ Remember from the functions lesson that Python does not do tail-call optimization
and therefore is not suitable for general purely functional programming.

▶ Python provides the more useful and ergonomic functional features, like map, filter,
and reduce.

▶ Favor comprehension expressions over using map and filter directly.
▶ Simple loop-based transformations should be done with comprehension expressions,

but more complex transformations can result in hard-to-read comprehension
expressions – always favor readability!

13 / 13

