
File Input/Output

1 / 8



Text File IO
▶ File IO is done in Python with the built-in File object which is returned by the

built-in open function
▶ Use the ‘w’ open mode for writing

1 $ python
2 >>> f = open(" hello .txt","w") # open for writing , create if necessary
3 >>> f. write ("Hello , file !\n") # write string to file; notice \n ending
4 >>> f. close () # close file , causing it to write to disk
5 >>> exit ()
6 $ cat hello .txt
7 Hello , file!

Use the ’r’ open mode for reading
1 $ python
2 >>> f = open(" hello .txt", "r") # open for reading in text mode
3 >>> contents = f.read ()
4 # slurp the whole file into memory
5 >>> contents
6 'Hello , file !\n'
7 >>> exit ()

Active Review
▶ Create a text file named lines.txt with three lines, line 1, line 2, and line 3.

2 / 8



Reading Lines from Text Files
The readlines() method reads all lines into memory as a list

1 >>> f = open(" lines .txt", "r")
2 >>> f. readlines ()
3 ["line 1\n", "line 2\n", "line 3\n"]

▶ readline() reads one line at a time, returning empty string when fully read
▶ re-open file or use seek() to go back to beginning of file

1 >>> f = open(" lines .txt", "r")
2 >>> f. readline ()
3 'line 1\n'
4 >>> f. readline ()
5 'line 2\n'
6 >>> f. readline ()
7 'line 3\n'
8 >>> f. readline ()
9 ''

10 >>> f.seek (0)
11 >>> f. readline ()
12 'line 1\n'

Active Review
▶ Use the walrus operator, :=, and a while loop to read each line of lines.txt and print

it to stdout.
3 / 8



Processing Lines in a Text File

Could use readlines() and iterate through list it returns
1 >>> f = open(" lines .txt", "r")
2 >>> for line in f. readlines ():
3 ... print line
4 ...
5 line 1
6 line 2
7 line 3

Better to take advantage of fact that a file object is Iterable

1 >>> for line in open(" lines .txt", "r"):
2 ... print line
3 ...
4 line 1
5 line 2
6 line 3

4 / 8



Files are Buffered
Try a little experiment. create a subdirectory named foo, cd to your new empty foo

directory, launch a Python shell, create open a new file named bar, and write something
to it:

1 $ mkdir foo
2 $ cd foo
3 $ python3
4 Python 3.4.0 (v3 .4.0:04 f714765c13 , Mar 15 2014 , 23:02:41) ...
5 >>> bar = open("bar", "w")
6 >>> bar. write ("last call!")
7 10
8 >>>

Now open another command shell or use your graphical file explorer to view the contents
of the bar file. It’s empty. Now go back to your Python shell and do:

1 >>> bar. close ()

Now view the contents of the bar file again. It has the text from the previous write() call.
Files are buffered, and the buffer isn’t (guaranteed to be) flushed to disk until the file
object is closed or the File Object goes out of scope or the program terminates
(gracefully).

5 / 8



Context Management with with

Python has context managers to close resources automatically. A context manager has
the form

1 with expression as variable :
2 block

which is equivalent to
1 variable = expression
2 block
3 variable . close ()

For example, the previous bar example is:
1 >>> with open("bar", "w") as bar:
2 ... bar. write ("last call!")
3 ...

And the file is closed and flushed to disk automatically after the block under the with
statement finishes.

6 / 8



Common File and Directory Tasks

Listing Files in a directory
1 import os
2 dir = 'some_dir '
3 for path in os. listdir (dir):
4 if os.path. isdir (path):
5 print (path + '/')
6 else:
7 print (path)

Moving and Copying Files
1 import shutil
2 shutil .move(source , destination )
3 shutil .copy(source , destination )

Making directories
1 import shutil
2 dir = 'some_dir '
3 shutil . mkdir (dir)

7 / 8



Conclusion

▶ Easy to write file processing utilities with Python.
▶ Many other libraries, like pandas, handle the file processing under the hood.
▶ Take a look at other built-in file-related standard modules, like gzip and tarfile.

8 / 8

https://docs.python.org/3/library/gzip.html
https://docs.python.org/3/library/tarfile.html

