
Data Structures

1 / 25

Built-in Data Structures

Values can be collected in data structures:
▶ Lists
▶ Tuples
▶ Dictionaries
▶ Sets

This lecture just an overview. See the Python documentation for complete details.

2 / 25

https://docs.python.org/3.6/library/stdtypes.html

Lists

A list is a mutable indexed sequence of Python objects.
▶ Create a list with square brackets

1 >>> boys = ['Stan ', 'Kyle ', 'Cartman ', 'Kenny ']

▶ Create an empty list with empty square brackets or list() function
1 >>> empty = []
2 >>> leer = list ()

▶ Add to a list with the append method.
1 >>> boys. append (" Tweak ")
2 >>> boys
3 ['Stan ', 'Kyle ', 'Cartman ', 'Kenny ', 'Tweak ']

3 / 25

Accessing List Elements

Individual list elements are accessed by index.
▶ First element at index 0

1 >>> boys = ['Stan ', 'Kyle ', 'Cartman ', 'Kenny ']
2 >>> boys [0]
3 'Stan '

▶ Negative indexes offset from the end of the list backwards
1 >>> boys [-1]
2 'Kenny '

▶ Lists are mutable, meaning you can add, delete, and modify elements
1 >>> boys [2] = 'Eric '
2 >>> boys
3 ['Stan ', 'Kyle ', 'Eric ', 'Kenny ']

4 / 25

Lists are Heterogeneous

Normally you store elements of the same type in a list, but you can mix element types
1 >>> mixed = [1, 'Two ', 3.14]
2 >>> type(mixed [0])
3 <class 'int '>
4 >>> type(mixed [1])
5 <class 'str '>
6 >>> type(mixed [2])
7 <class 'float '>

▶ What’s the length of the second element of mixed ?

5 / 25

Creating Lists from Strings

▶ Create a list from a string with str’s split() method:
1 >>> grades_line = "90, 85, 92, 100"
2 >>> grades_line . split ()
3 ['90,', '85,', '92,', '100 ']

▶ By default split() uses whitespace to delimit elements. To use a different delimiter,
pass as argument to split():

1 >>> grades_line . split (',')
2 ['90 ', ' 85 ', ' 92 ', ' 100 ']

▶ The list() function converts any iterable object (like sequences) to a list.
Remember that strings are sequences of characters:

1 >>> list('abcdefg ')
2 ['a', 'b', 'c', 'd', 'e', 'f', 'g]

6 / 25

List Operators

The in operator tests for list membership. Can be negated with not:
1 >>> boys
2 ['Stan ', 'Kyle ', 'Cartman ', 'Kenny ']
3 >>> 'Kyle ' in boys
4 True
5 >>> 'Kyle ' not in boys
6 False

▶ The + operator concatenates two lists, producing a new list:
1 >>> girls = ['Wendy ', 'Annie ', 'Bebe ', 'Heidi ']
2 >>> kids = boys + girls
3 >>> kids
4 ['Stan ', 'Kyle ', 'Cartman ', 'Kenny ', 'Wendy ', 'Annie ', 'Bebe ', 'Heidi ']

▶ The * operator repeats a list to produce a new list:
1 >>> ['Ni '] * 5
2 ['Ni ', 'Ni ', 'Ni ', 'Ni ', 'Ni ']

7 / 25

Functions on Lists

Python provides several built-in functions that take list parameters.
▶ len(xs) returns the number of elements in xs, where xs is any object which has a

number of elements.
1 >>> kids
2 ['Stan ', 'Kyle ', 'Cartman ', 'Kenny ', 'Wendy ', 'Annie ', 'Bebe ', 'Heidi ']
3 >>> len(kids)
4 8

▶ min(xs) returns the least element of xs, max(xs) returns the greatest.
1 >>> min ([8 , 6, 7, 5, 3, 0, 9])
2 0
3 >>> max ([8 , 6, 7, 5, 3, 0, 9])
4 9

▶ What is min(kids)?

8 / 25

The del Statement
The del statement unbinds a variable from a value.
▶ Each element of a list is a variable whose name is formed by placing an int index in

square brackets after a list expression. Here, boys is a list expression and boys[3] is a
variable referring to the fourth element of the list.

1 >>> boys = ['Stan ', 'Kyle ', 'Cartman ', 'Kenny ']
2 >>> boys [3]
3 'Kenny '

▶ Applying del to a list element has the effect of removing it from the list.
1 >>> del boys [3]
2 >>> boys
3 ['Stan ', 'Kyle ', 'Cartman '] # You killed Kenny !

▶ A list variable is a variable, so you can delete the whole list
1 >>> del boys
2 >>> boys
3 Traceback (most recent call last):
4 File "<stdin >", line 1, in <module >
5 NameError : name 'boys ' is not defined

9 / 25

List Methods

▶ xs.count(x): number of occurrences of x in the sequence xs

1 >>> surfin_bird = "Bird bird bird b-bird 's the word". split ()
2 >>> surfin_bird
3 ['Bird ', 'bird ', 'bird ', "b-bird 's", 'the ', 'word ']
4 >>> surfin_bird . count ('bird ')
5 2

▶ xs.remove(x) removes the first occurrence of x in xs, or raises a ValueError if x is not
in xs

1 >>> boys. remove ('Kenny ')
2 >>> boys
3 ['Stan ', 'Kyle ', 'Cartman ', 'Butters ', 'Tweak ', 'Jimmy ']
4 >>> boys. remove ('Professor Chaos ')
5 Traceback (most recent call last):
6 File "<stdin >", line 1, in <module >
7 ValueError : list. remove (x): x not in list

10 / 25

Using a List as a Stack

Use the append and pop methods to use a list as a stack.
1 >>> rpn = []
2 >>> rpn. append (3)
3 >>> rpn. append (2)
4 >>> rpn. append (int. __mul__)

▶ xs.pop() removes and returns the last element of the list
1 >>> op = rpn.pop ()
2 >>> op(rpn.pop () , rpn.pop ())
3 6

11 / 25

Slices
Slicing lists works just like slicing strings (they’re both sequences)
▶ Take the first two elements:

1 >>> boys = ['Stan ', 'Kyle ', 'Cartman ', 'Butters ', 'Tweak ']
2 >>> boys [0:2]
3 ['Stan ', 'Kyle ']

▶ Take every second element, starting with the first:
1 >>> boys [::2]
2 ['Stan ', 'Cartman ', 'Tweak ']
3 >>> boys [0:5:2] # same as above
4 ['Stan ', 'Cartman ', 'Tweak ']

▶ Take the second from the end:
1 >>> boys [-2]
2 'Butters '

Note that slice operations return new lists.
▶ What’s the value of boys[-1:1] ?
▶ What’s the value of boys[-1:1:-1] ?
▶ What’s the value of boys[::-1] ?

12 / 25

Aliases

Aliasing occurs when two or more variables reference the same object
▶ Assignment from a variable creates an alias

1 >>> brats = boys
2 >>> boys
3 ['Stan ', 'Kyle ', 'Cartman ', 'Butters ', 'Tweak ']
4 >>> brats
5 ['Stan ', 'Kyle ', 'Cartman ', 'Butters ', 'Tweak ']

Now boys and brats are aliases.
▶ Changes to one are reflected in the other, becuase they reference the same object

1 >>> brats . append ('Timmy ')
2 >>> brats
3 ['Stan ', 'Kyle ', 'Cartman ', 'Butters ', 'Tweak ', 'Timmy ']
4 >>> boys
5 ['Stan ', 'Kyle ', 'Cartman ', 'Butters ', 'Tweak ', 'Timmy ']

13 / 25

Copies

Operators create copies
1 >>> brats + ['Bebe ', 'Wendy ']
2 ['Stan ', 'Kyle ', 'Cartman ', 'Butters ', 'Tweak ', 'Timmy ', 'Bebe ',
3 'Wendy ']
4 >>> brats
5 ['Stan ', 'Kyle ', 'Cartman ', 'Butters ', 'Tweak ', 'Timmy ']

You have to reassign to the list to make an update:
1 >>> brats = brats + ['Bebe ', 'Wendy '] # could also use shortcut +=
2 >>> brats
3 ['Stan ', 'Kyle ', 'Cartman ', 'Butters ', 'Tweak ', 'Timmy ', 'Bebe ',
4 'Wendy ']

Notice that after the reassignment, brats is no longer an alias of boys

1 >>> boys
2 ['Stan ', 'Kyle ', 'Cartman ', 'Butters ', 'Tweak ', 'Timmy ']

14 / 25

Slicing

▶ Slice on the right hand side of an assignment creates a copy:
1 >>> first_two = boys [:2]
2 >>> first_two
3 ['Stan ', 'Kyle ']
4 >>> first_two [0] = 'Stan the man '
5 >>> first_two
6 ['Stan the man ', 'Kyle ']
7 >>> boys
8 ['Stan ', 'Kyle ', 'Cartman ', 'Butters ', 'Tweak ', 'Timmy ']

▶ Slices on the left hand side allow for flexible assignment. Here we splice in 4 new
elements in place of first 2 elements of boys:

1 >>> boys [0:2] = ['Randy ', 'Sharon ', 'Gerald ', 'Sheila ']
2 >>> boys
3 ['Randy ', 'Sharon ', 'Gerald ', 'Sheila ', 'Cartman ', 'Butters ',
4 'Tweak ', 'Timmy ']

15 / 25

A Few More List Operations

You can combine the elements of a list to form a string with str’s join() method.
1 >>> aretha = ['R', 'E', 'S', 'P', 'E', 'C', 'T']
2 >>> "-".join(aretha)
3 'R-E-S-P-E-C-T'

sorted() function returns a new list
1 >>> sorted (aretha)
2 ['C', 'E', 'E', 'P', 'R', 'S', 'T']
3 >>> aretha # Notice original is unchanged
4 ['R', 'E', 'S', 'P', 'E', 'C', 'T']

sort() method modifies the list it is invoked on
1 >>> aretha .sort ()
2 >>> aretha
3 ['C', 'E', 'E', 'P', 'R', 'S', 'T']

16 / 25

Active Review

Given a list representing a line from a gradebook file:
1 >>> grades_line = ['Chris ', 100 , 90, 95]

▶ Use a slice to assign the grades to a variable named grades.
▶ Sum the grades using Python’s built-in sum() function.
▶ Combine the sum of the grades with the length of the grades to find the average.

17 / 25

Tuples

Tuples are like lists, but are immutable.
1 Tuples are created by separating objects with commas
2 >>> pair = 1, 2
3 >>> pair
4 (1, 2)

Tuples can be used in assignments to “unpack” a sequence
1 >>> a, b = [1, 2]
2 >>> a
3 1
4 >>> b
5 2

Tuple assignment can be used to swap values
1 >>> b, a = a, b
2 >>> a, b
3 (2, 1)

18 / 25

Dictionaries

A dictionary is a map from keys to values.
Create dictionaries with {}

1 >>> capitals = {}

Add key-value pairs with assignment operator
1 >>> capitals ['Georgia '] = 'Atlanta '
2 >>> capitals ['Alabama '] = 'Montgomery '
3 >>> capitals
4 {'Georgia ': 'Altanta ', 'Alabama ': 'Montgomery '}

Keys are unique, so assignment to same key updates mapping
1 >>> capitals ['Alabama '] = 'Birmingham '
2 >>> capitals
3 {'Georgia ': 'Altanta ', 'Alabama ': 'Birmingham '}

19 / 25

Dictionary Operations

Remove a key-value mapping with del statement
1 >>> del capitals ['Alabama ']
2 >>> capitals
3 {'Georgia ': 'Atlanta '}

Use the in operator to test for existence of key (not value)
1 >>> 'Georgia ' in capitals
2 True
3 >>> 'Atlanta ' in capitals
4 False

Extend a dictionary with update() method, get values as a list with values method
1 >>> capitals . update ({ 'Tennessee ': 'Nashville ', 'Mississippi ':
2 'Jackson '})
3 >>> capitals . values ()
4 dict_values (['Jackson ', 'Nashville ', 'Atlanta '])

20 / 25

Conversions to dict

Any sequence of two-element sequences can be converted to a dict

A list of two-element lists:
1 >>> dict ([[1 , 1], [2, 4], [3, 9], [4, 16]])
2 {1: 1, 2: 4, 3: 9, 4: 16}

A list of two-element tuples:
1 >>> dict ([('Lassie ', 'Collie '), ('Rin Tin Tin ', 'German
2 Shepherd ')])
3 {'Rin Tin Tin ': 'German Shepherd ', 'Lassie ': 'Collie '}

Even a list of two-character strings:
1 >>> dict (['a1 ', 'a2 ', 'b3 ', 'b4 '])
2 {'b': '4', 'a': '2'}

Notice that subsequent pairs overwrote previously set keys.

21 / 25

Sets

Sets have no duplicates, like the keys of a dict. They can be iterated over (we’ll learn
that later) but can’t be accessed by index.
▶ Create an empty set with set() function, add elements with add() method

1 >>> names = set ()
2 >>> names .add('Ally ')
3 >>> names .add('Sally ')
4 >>> names .add('Mally ')
5 >>> names .add('Ally ')
6 >>> names
7 {'Ally ', 'Mally ', 'Sally '}

▶ Converting to set a convenient way to remove duplicates
1 >>> set ([1 ,2 ,3 ,4 ,3 ,2 ,1])
2 {1, 2, 3, 4}

22 / 25

Set Operations

Intersection (elements in a and b)
1 >>> a = {1, 2}
2 >>> b = {2, 3}
3 >>> a & b # or a. intersetion (b)
4 {2}

Union (elements in a or b)
1 >>> a | b # or a. union (b)
2 {1, 2, 3}

Difference (elements in a that are not in b)
1 >>> a - b # or a. difference (b)
2 {1}

Symmetric difference (elements in a or b but not both)
1 >>> a ^ b # or a. symmetric_difference (b)
2 {1, 3}

23 / 25

Set Predicates

A predicate function asks a question with a True or False answer.
Subset of:

1 >>>a <= b # or a. issubset (b)
2 False

Proper subset of:
1 >>> a < b
2 False

Superset of:
1 >>> a >= b # or a. issuperset (b)
2 False

Proper superset of:
1 >>> a > b
2 False

24 / 25

Closing Thoughts

Typical Python programs make extensive use of built-in data structures and often
combine them (lists of lists, dictionaries of lists, etc)
▶ These are just the basics
▶ Explore these data structures on your own
▶ Read the books and Python documentation

This is a small taste of the expressive power and syntactic convenience of Python’s data
structures.

25 / 25

