
Classes and Objects

1 / 13

Python is Object-Oriented

Every value in Python is an object, meaning an instance of a class. Even values that are
considered “primitive” in some other languages.

1 >>> type (1)
2 <class 'int '>

2 / 13

Class Definitions

1 class <class_name >(< superclasses >):
2 <body >

▶ <class_name> is an identifier
▶ <superclasses> is a comma-separated list of superclasses. Can be empty, in which

case object is implicit superclass
▶ <body> is a non-empty sequence of statements

A class definition creates a class object in much the same way that a function definition
creates a function object.

3 / 13

Class Attributes

1 class Stark :
2 creator = " George R.R. Martin "
3 words = " Winter is coming "
4 sigil = " Direwolf "
5 home = " Winterfell "
6
7 def __init__ (self , name=None):
8 self.name = name if name else "No one"
9

10 def full_name (self):
11 return "{} Stark ". format (self.name)

creator, words, sigil, and home are class attributes. Class attributes belong to the class
and are shared by all instances

4 / 13

Instance Attributes

1 class Stark :
2 creator = " George R.R. Martin "
3 words = " Winter is coming "
4 sigil = " Direwolf "
5 home = " Winterfell "
6
7 def __init__ (self , name=None):
8 self.name = name if name else "No one"
9

10 def full_name (self):
11 return "{} Stark ". format (self.name)

▶ self.name is an instance attribute becuase it is prefaced with self. and defined in a
method that has a first parameter named self. Each instance of the class has its
own copies of instance attributes.

▶ full_name is an instance method because it defined in a class and has at least one
parameter. The first parameter is implicitly a reference to the instance on which a
method is called.

5 / 13

Classes and Objects

In this example, ned and robb are instances of Stark. Each instance has it’s own name.
1 >>> import got
2 >>> ned = got. Stark (" Eddard ")
3 >>> ned.name
4 'Eddard '
5 >>> robb = got. Stark ("Robb")
6 >>> robb.name
7 'Robb '

Ivoking the full_name() method on an object implicitly passes the object as the first
argument (self), which you could (but shoudn’t) do explicitly:

1 >>> ned. full_name () # This is normal
2 'Eddard Stark '
3 >>> got. Stark . full_name (ned) # This is only instructive
4 'Eddard Stark '

6 / 13

Class Members

Each instance shares the class attributes creator, words, sigil, and home.
1 >>> got. Stark . sigil
2 'Direwolf '
3 >>> ned. sigil
4 'Direwolf '
5 >>> robb. sigil
6 'Direwolf '

Remember that the is operator returns True if its operands reference the same object in
memory. So this deomonstrates that sigil is shared between the Stark class and all
instances of the Stark class:

1 >>> got. Stark . sigil is ned. sigil
2 True

7 / 13

Superclasses

Superclasses, or parent classes, or base classes, define attributes that you wish to be
common to a family of objects.
Notice that all of our noble houses have the same creator, and every instance has a
name. We can represent this commonality by creating a base class for all house classes:

1 class GotCharacter :
2 creator = " George R.R. Martin "
3
4 def __init__ (self , name=None):
5 self.name = name if name else "No one"

8 / 13

Refactored Stark

Here is Stark refactored to use the GotCharacter superclass:
1 class Stark (GotCharacter):
2 words = " Winter is coming "
3 sigil = " Direwolf "
4 home = " Winterfell "
5
6 def __init__ (self , name):
7 # This is how you invoke a superclass method
8 super (). __init__ (name)

Exercise: refactor the other GoT houses to use the GotCharacter superclass.

9 / 13

Magic, a.k.a., Dunder Methods
Methods with names that begin and end with __

1 class SuperTrooper (Trooper):
2
3 def __init__ (self , name , is_mustached):
4 super (). __init__ (name)
5 self. is_mustached = is_mustached
6
7 # Used by print ()
8 def __str__ (self):
9 return " <{} {}>". format (self.name , ":-{" if self. is_mustached else

":-|")
10
11 # Used by REPL
12 def __repr__ (self):
13 return str(self)
14
15 # Makes instances of SuperTrooper orderable
16 def __lt__ (self , other):
17 if self. is_mustached and not other . is_mustached :
18 return False
19 elif not self. is_mustached and other . is_mustached :
20 return True
21 else:
22 return self.name < other .name

10 / 13

Sortable SuperTroopers

With the definition of __lt__(self, other) in SuperTrooper, a list of SuperTrooper is sortable.
1 sts = [SuperTrooper (" Thorny ", True),
2 SuperTrooper ("Mac", True),
3 SuperTrooper (" Rabbit ", True),
4 SuperTrooper (" Farva ", True),
5 SuperTrooper (" Foster ", False)]
6 print (" SuperTroopers :")
7 print (sts)
8 print (" SuperTroopers sorted by mustache , then by name:")
9 print (sorted (sts))

Produces:
1 SuperTroopers :
2 [< Thorny :-{>, <Mac :-{>, <Rabbit :-{>, <Farva :-{>, <Foster :-|>]
3 SuperTroopers sorted by mustache , then by name:
4 [< Foster :-|>, <Farva :-{>, <Mac :-{>, <Rabbit :-{>, <Thorny :-{>]

11 / 13

Final Thoughts

Recall the design of the Game of Thrones character types:
▶ A superclass GotCharacter with class attributes common to Got characters of all

houses.
▶ A class for each house, subclassing GotCharacter and defining the common attributes

of all house members.
▶ Each character is an instance of one of these house classes, like Lannister, Stark, etc.

Is this a good design? What if you had an instance of a Stark and you later found out
that they’re a Targaryen? Refactor the design of the Got character classes to allow a
character to change houses without having to modify the code and re-run the program.

12 / 13

Conclusion

Magic!

13 / 13

https://www.youtube.com/embed/az5qOjhsang

