
Graph Neural Networks

CS 4277 Deep Learning

Kennesaw State University

1 / 31

Graphs in the Real World

2 / 31

Types of Graphs

3 / 31

Graph Represenatation

4 / 31

Adjacency Matrices

5 / 31

Permuting Node Indices

6 / 31

Graph Network Tasks

7 / 31

Loss Functions for Supervised Graph Problems
Supervised graph problems typically in three categories:

1. Graph-level tasks: assign label or estimate a value from the whole graph.

Pr(y = 1|X, A) = sig(βK + ωKHK1
N

)

2. Node-level tasks: assign a label or value to each node in the graph.
Loss functions are defined in the same way as for graph-level tasks, except that now this is done
independently at each node n:

Pr(y(n) = 1|X, A) = sig(βK + ωKH
(n)
K)

3. Edge-prediction tasks: predict the probability that an edge should exist between nodes.
Like binary classification, map node embeddings to single number representing the probability
that nodes should be connected.

Pr(y(mn) = 1|X, A) = sig(h(m)T h(n))

8 / 31

Graph-Level Loss Functions

Pr(y = 1|X, A) = sig(βK + ωKHK1
N

)

9 / 31

Node-Level Loss Functions

Loss functions are defined in the same way as for graph-level tasks, except that now this is done
independently at each node n:

Pr(y(n) = 1|X, A) = sig(βK + ωKH
(n)
K)

10 / 31

Edge Prediction Loss Functions

Like binary classification, map node embeddings to single number representing the probability
that nodes should be connected.

Pr(y(mn) = 1|X, A) = sig(h(m)T h(n))

11 / 31

Graph Convolutional Networks

H1 = F (X, A, ϕ0)
H2 = F (H1, A, ϕ1)
H3 = F (H2, A, ϕ2)

... =
...

HK = F (HK−1, A, ϕK−1)

12 / 31

Equivariance and Invariance

Hk+1P = F (HkP , P T AP , ϕk)

y = sig(βK + ωKHK1
N

) = sig(βK + ωKHKP 1
N

)

13 / 31

Parameter Sharing

▶ Convolutional layers for images process each pixel identically
▶ Convolution updates variables by taking weighted sum of information from neighbors
▶ Could do similar for graph networks by using same parameters at every node
▶ Challenge: nodes have differeing numbers of neighbors

14 / 31

Example Graph Convolutional Network (GCN) Layer

Aggregate information from neighboring nodes by summing their embeddings:

agg(n, k) =
∑

m∈ne(n)

h
(m)
k

where ne(n) is the set of indices of the nieghbors of node n.

Then apply linear transform Ωk to embedding h
(n)
k , add bias βk and pass through nonlinear

activation function.

h
(n)
k+1 = a

(
βk + Ωk · h

(n)
k + Ωk · agg(n, k)

)
If we collect node embeddings into D × N matrix Hk and post-multiply by adjacency matrix A,
the nth column of this result is agg(n, k), leading to the compact matrix formulatoin for note
updates:

Hk+1 = a
(
βk1T + ΩkHk + ΩkHkA

)
Hk+1 = a

(
βk1T + ΩkHk(A + I)

)

15 / 31

Example: Graph Classification

H1 = a
(
β01T + Ω0X(A + I)

)
H2 = a

(
β11T + Ω0H1(A + I)

)
... =

...
HK = a

(
βK−11T + ΩK−1HK−1(A + I)

)
f(X, A, Φ) = sig

(
βK + ωKHK1

N

)

16 / 31

Training with Batches

Given I training graphs {Xi, Ai} and their labels yi, the parameters Φ = {βk, Ωk}K
k=0 can be

learned using SGD and the binary cross-entropy loss (equation 5.19). Fully connected networks,
convolutional networks, and transformers all exploit the parallelism of modern hardware to
process an entire batch of training examples concurrently. To this end, the batch elements are
concatenated into a higher-dimensional tensor. However, each graph may have a different
number of nodes. Hence, the matrices Xi and Ai have different sizes, and there is no way to
concatenate them into 3D tensors.
Luckily, a simple trick allows us to process the whole batch in parallel. The graphs in the batch
are treated as disjoint components of a single large graph. The network can then be run as a
single instance of the network equations. The mean pooling is carried out only over the individual
graphs to make a single representation per graph that can be fed into the loss function.

17 / 31

Inductive vs. Transductive Models

18 / 31

Example: Node Classification

f(X, A, Φ) = sig
(
βK1T + ωKHK

)

19 / 31

Choosing Batches

20 / 31

Neighborhood Sampling

21 / 31

Graph Partitioning

22 / 31

Layers for GCNs

Approaches to both (i) the combination of the current embedding with the aggregated neighbors
and (ii) the aggregation process itself.
▶ Combining current node and aggregated neighbors
▶ Residual connections
▶ Mean aggregation
▶ Kipf normalization
▶ Max pooling aggregation
▶ Aggregation by attention

23 / 31

Combining Current Node and Aggregated Neighbors
In the example GCN layer above, we combined the aggregated neighbors HA with the current
nodes H by just summing them:

Hk+1 = a
(
βk1T + ΩkHk(A + I)

)
(13.13)

Another option is to multiply the current node by a factor of (1 + ϵk), where ϵk is a learned
scalar that is different for each layer. This is called diagonal enhancement:

Hk+1 = a
(
βk1T + ΩkHk(A + (1 + ϵk)I)

)
(13.14)

A third option is to apply a different linear transform Φk to the current node:

Hk+1 = a(βk1T + ΩkHkA + ΦkHk)

Hk+1 = a
(
βk1T + [ΩkΦk]

[
HkA

Hk

])
Hk+1 = a

(
βk1T + Ω′

k

[
HkA

Hk

])
(13.15)

where Ω′
k = ΩkΦk.

24 / 31

Residual Connections

With residual connections, the aggregated representation from the neighbors is transformed and
passed through the activation function before summation or concatenation with the current node.
For the latter case, the associated network equations are:

Hk+1 =
[
a(βk1T + ΩkHkA)

Hk

]
(13.16)

25 / 31

Mean Aggregation

Average of neighbors instead of sum:

agg(n) = 1
|ne(n)|

∑
m∈ne(n)

hm (13.17)

If we introduce an N × N matrix D in which each non-zero element contains the number of
neighbors for the associated node, then each diagonal element in D−1 contains the denominator
from Equation 13.17. Then the new GCN layer is:

Hk+1 = a
(
βk1T + ΩkHk(AD−1 + I)

)
(13.18)

26 / 31

Kipf Normalization

Include the current node with its neighbors. Sum of node representations normalized as:

agg(n) =
∑

m∈ne(n)

hm√
|ne(n)||ne(m)|

(13.19)

The logic: information from nodes with many neighbors should be down-weighted since
connections provide less unique information.

27 / 31

Max Pooling Aggregation

agg(n) = maxm∈ne(n)(hm) (13.21)

28 / 31

GCNs and Graph Attention Networks
The last form of aggregation we’ll discuss is aggregation by attention, summarized here:

29 / 31

Edge Graphs

30 / 31

Closing Thoughts

Boom!

31 / 31

