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Biological Vision

In the 1950s, Hubel and Wiesel at Johns Hopkins, experimenting on cats, discovered the
hierarchical nature of neurons in the visual cortex.

“simple “complex
c c ” C c ”

neuron

eve§ —— ;| ee— - >
: layers 1

Thttps://www.deeplearningillustrated.com
2 /1%


https://www.deeplearningillustrated.com

Machine Vision

In 1980 Kunihiko Fukushima proposed the Neocognitron architecture explicitly based on neuron

layers in biological vision.
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It took the success of LeCun and Bengio's LeNet-5, and later Krizhevsky and Stuskever's
AlexNet to realize the full potential of a deeply layered machine vision model and firmly establish
the supremacy of Deep Learning for machine vision.
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Composing Shallow Networks
Recall a single input/output shallow network:
hg = a(fq0 + O41x)
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You could concatenate this with another shallow network with the same architecture that takes
the first network’s output as its input:

o= a(byo + Oa1y)
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Composed Shallow Networks
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Composed Shallow Networks Formulation
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Deep Neural Networks
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Hyperparameters

431

Q /18



Linear Algebra Interlude: Matrices

Boom!



Matrix Network Notation
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General Matrix Formulation
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Capacity of Shallow vs. Deep Neural Networks
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Depth and Width Efficiency

453



Large Structured Inputs
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Training and Generalization
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