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Regularization

* Why is there a generalization gap between training and test data?
* Overfitting (model describes statistical peculiarities)
 Model unconstrained in areas where there are no training examples

= methods to reduce the generalization gap
* Technically means adding terms to loss function
* But colloquially means any method (hack) to reduce gap



Regularization

* Implicit regularization

* Early stopping

* Ensembling

* Dropout

* Adding noise

* Bayesian approaches

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation



Explicit regularization

e Standard loss function:
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Explicit regularization

e Standard loss function:

¢ = argmin [L[qﬁﬂ
¢

— argmin [Z li[xs, yz-]]

¢ i=1

* Regularization adds an extra term

I

¢ = arg;nin [Z bilxi, yil + A g[qb]]
i—1

e Favors some parameters, disfavors others.

e 1>0 controls the strength



Explicit regularization

a)
22.5

¢1

2.5



Explicit regularization
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Explicit regularization
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Probabilistic interpretation

e Maximum likelihood:

A

. _
¢ = argmax || | Pr(yilx;, ®)
é =1 ]

* Regularization is equivalent to a adding a over parameters

A

I
¢ = argglax HPT(}’i\Xi, ¢)Pr(¢)
=1

... what you know about parameters before seeing the data



Equivalence

* Explicit regularization:
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Equivalence

* Explicit regularization:

A

¢ = afg;ﬂiﬂ > lilxiyi 4+ M- gle)
=1 |

* Probabilistic interpretation:

A

b = axgmas | [] Privibei, 6)Pr(9)
L 2=1 _

* Mapping:
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L2 Regularization

e Can only use very general terms
* Most common is
* Favors smaller parameters

A

b = arg;nin Lo, {x:,yi}| + )\Zgb?
J

* Also called
* In neural networks, usually just for weights and called




Why does L2 regularization help?

 Discourages overcommitment to the data (overfitting)
* Encourages smoothness between datapoints



L2 regularization
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Regularization

* Explicit regularization

* Early stopping

* Ensembling

* Dropout

* Adding noise

* Bayesian approaches

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation



Implicit regularization

a) Loss b) Regularization c) Loss + regularization
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Gradient descent approximates a Finite step size equivalent to Add in that regularization and
differential equation regularization differential equation converges to

(infinitesimal step size) same place



Implicit regularization

* Gradient descent disfavors areas where gradients are steep
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Implicit regularization

* Gradient descent disfavors areas where gradients are steep
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Implicit regularization

* Gradient descent disfavors areas where gradients are steep
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L =L B
e SGD likes all batches to have similar gradients
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b=1

* Depends on learning rate — perhaps why larger learning rates generalize better.



a) Loss, L[¢)] _ b) GD modification
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MNISTID no label noise

=== Full batch, LR = 0.5
=== Full batch, LR = 0.1
Full batch, LR = 0.05

100 200 300
Hidden layer size

Generally performance

best for larger learning rates
best with smaller batches

400

MNISTID no label noise

=== Batch size 10, LR = 0.1
=== Batch Size 100, LR = 0.1
Full batch (4000), LR = 0.1

Test

Train

100 200 300 400
Hidden layer size



Regularization

* Explicit regularization
* Implicit regularization

* Ensembling

* Dropout

* Adding noise

* Bayesian approaches

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation



Early stopping

* If we stop training early, weights don’t have time to overfit to noise
* Weights start small, don’t have time to get large

* Reduces effective model complexity

* Known as

* Don’t have to re-train
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Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Dropout

* Adding noise

* Bayesian approaches

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation



Ensembling

* Average together several models —an
* Can take mean or median
 Different initializations / different models

e Different subsets of the data resampled with replacements --



a) Original b) Model 1 c) Model 2
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Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Adding noise

* Bayesian approaches

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation






Dropout

a) Original b) Turn off hidden unit 8 C) 2000 iters dropout (7/8/9)
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Can eliminate kinks in function that are far from data and don’t contribute to
training loss

10



Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Dropout

* Bayesian approaches
* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation



Adding noise
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Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation



Bayesian approaches

* There are many parameters compatible with the data
* Can find a probability distribution over them Prior info about

/ parameters
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Bayesian approaches

* There are many parameters compatible with the data
* Can find a probability distribution over them Prior info about

/ parameters

L Priyilxi, @) Pr(e)
Priel.yi) [Tz, Pr(yilxi, @) Pr(¢)de

* Take all possible parameters into account when make prediction

Pr(ylx. {xi,y:}) = / Pr(ylx, &) Pr(|{xi,y:})d¢



Bayesian approaches
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Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Dropout

* Adding noise

* Bayesian approaches

* Data augmentation



* Transfer learning

Segmentation
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Segmentation

Model —>
output layer
* Transfer learning 1
Model —> Vepth
output layer
* Multi-task b)
learning Segmentation
= output layer
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Depth
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* Transfer learning

* Multi-task
learning

 Self-supervised
learning

Segmentation

Model output layer
Depth
Model =+
output layer
Segmentation
output layer
Model
Depth
output layer
Model Inpainting
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Regularization

* Explicit regularization

* Implicit regularization

* Early stopping

* Ensembling

* Dropout

* Adding noise

* Bayesian approaches

* Transfer learning, multi-task learning, self-supervised learning



Data augmentation

Flip Rotate and crop d) Vertical stretch




Regularization overview

Make function smoother

Increase data

\

Data
augmentation
Multi-task
learning
Transfer
learning

)

Combine multiple models Find wider minima



