

CM20315 - Machine Learning

Prof. Simon Prince

- Why is there a generalization gap between training and test data?
 - Overfitting (model describes statistical peculiarities)
 - Model unconstrained in areas where there are no training examples
- Regularization = methods to reduce the generalization gap
- Technically means adding terms to loss function
- But colloquially means any method (hack) to reduce gap

- Explicit regularization
- Implicit regularization
- Early stopping
- Ensembling
- Dropout
- Adding noise
- Bayesian approaches
- Transfer learning, multi-task learning, self-supervised learning
- Data augmentation

Standard loss function:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} [L[\boldsymbol{\phi}]]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} \ell_i[\mathbf{x}_i, \mathbf{y}_i] \right]$$

Standard loss function:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} [L[\boldsymbol{\phi}]]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} \ell_i[\mathbf{x}_i, \mathbf{y}_i] \right]$$

Regularization adds an extra term

$$\hat{\boldsymbol{\phi}} = \operatorname*{argmin}_{\boldsymbol{\phi}} \left[\sum_{i=1}^{I} \ell_i[\mathbf{x}_i, \mathbf{y}_i] + \lambda \cdot g[\boldsymbol{\phi}] \right]$$

Standard loss function:

$$\hat{\phi} = \underset{\phi}{\operatorname{argmin}} [L[\phi]]$$

$$= \underset{\phi}{\operatorname{argmin}} \left[\sum_{i=1}^{I} \ell_i[\mathbf{x}_i, \mathbf{y}_i] \right]$$

Regularization adds an extra term

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} \ell_i[\mathbf{x}_i, \mathbf{y}_i] + \lambda \cdot g[\boldsymbol{\phi}] \right]$$

- Favors some parameters, disfavors others.
- λ >0 controls the strength

Probabilistic interpretation

Maximum likelihood:

$$\hat{\boldsymbol{\phi}} = \operatorname*{argmax}_{\boldsymbol{\phi}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{x}_{i}, \boldsymbol{\phi}) \right]$$

Regularization is equivalent to a adding a prior over parameters

$$\hat{\boldsymbol{\phi}} = \operatorname*{argmax}_{\boldsymbol{\phi}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{x}_{i}, \boldsymbol{\phi}) Pr(\boldsymbol{\phi}) \right]$$

... what you know about parameters before seeing the data

Equivalence

• Explicit regularization:

$$\hat{oldsymbol{\phi}} = \operatorname*{argmin}_{oldsymbol{\phi}} \left[\sum_{i=1}^{I} \ell_i[\mathbf{x}_i, \mathbf{y}_i] + \lambda \cdot \mathrm{g}[oldsymbol{\phi}] \right]$$

Probabilistic interpretation:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{x}_{i}, \boldsymbol{\phi}) Pr(\boldsymbol{\phi}) \right]$$

Equivalence

• Explicit regularization:

$$\hat{oldsymbol{\phi}} = \operatorname*{argmin}_{oldsymbol{\phi}} \left[\sum_{i=1}^{I} \ell_i[\mathbf{x}_i, \mathbf{y}_i] + \lambda \cdot \mathrm{g}[oldsymbol{\phi}] \right]$$

• Probabilistic interpretation:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_i | \mathbf{x}_i, \boldsymbol{\phi}) Pr(\boldsymbol{\phi}) \right]$$

Mapping:

$$\lambda \cdot g[\phi] = -\log[Pr(\phi)]$$

- Can only use very general terms
- Most common is L2 regularization
- Favors smaller parameters

$$\hat{\boldsymbol{\phi}} = \operatorname*{argmin}_{\boldsymbol{\phi}} \left[\operatorname{L}[\boldsymbol{\phi}, \{\mathbf{x}_i, \mathbf{y}_i\}] + \lambda \sum_{j} \phi_j^2 \right]$$

- Also called Tikhonov regularization, ridge regression
- In neural networks, usually just for weights and called weight decay

Why does L2 regularization help?

- Discourages overcommitment to the data (overfitting)
- Encourages smoothness between datapoints

L2 regularization

- Explicit regularization
- Implicit regularization
- Early stopping
- Ensembling
- Dropout
- Adding noise
- Bayesian approaches
- Transfer learning, multi-task learning, self-supervised learning
- Data augmentation

Gradient descent disfavors areas where gradients are steep

$$\tilde{L}_{GD}[\boldsymbol{\phi}] = L[\boldsymbol{\phi}] + \frac{\alpha}{4} \left\| \frac{\partial L}{\partial \boldsymbol{\phi}} \right\|^2$$

•

Gradient descent disfavors areas where gradients are steep

$$\tilde{L}_{GD}[\boldsymbol{\phi}] = L[\boldsymbol{\phi}] + \frac{\alpha}{4} \left\| \frac{\partial L}{\partial \boldsymbol{\phi}} \right\|^2$$

SGD likes all batches to have similar gradients

$$\tilde{L}_{SGD}[\phi] = \tilde{L}_{GD}[\phi] + \frac{\alpha}{4B} \sum_{b=1}^{B} \left\| \frac{\partial L_b}{\partial \phi} - \frac{\partial L}{\partial \phi} \right\|^2$$

$$= L[\phi] + \frac{\alpha}{4} \left\| \frac{\partial L}{\partial \phi} \right\|^2 + \frac{\alpha}{4B} \sum_{b=1}^{B} \left\| \frac{\partial L_b}{\partial \phi} - \frac{\partial L}{\partial \phi} \right\|^2$$

Gradient descent disfavors areas where gradients are steep

$$\tilde{L}_{GD}[\boldsymbol{\phi}] = L[\boldsymbol{\phi}] + \frac{\alpha}{4} \left\| \frac{\partial L}{\partial \boldsymbol{\phi}} \right\|^2$$

SGD likes all batches to have similar gradients

$$\tilde{L}_{SGD}[\phi] = \tilde{L}_{GD}[\phi] + \frac{\alpha}{4B} \sum_{b=1}^{B} \left\| \frac{\partial L_b}{\partial \phi} - \frac{\partial L}{\partial \phi} \right\|^2$$

$$= L[\phi] + \frac{\alpha}{4} \left\| \frac{\partial L}{\partial \phi} \right\|^2 + \frac{\alpha}{4B} \sum_{b=1}^{B} \left\| \frac{\partial L_b}{\partial \phi} - \frac{\partial L}{\partial \phi} \right\|^2$$

Depends on learning rate – perhaps why larger learning rates generalize better.

Generally performance

- best for larger learning rates
- best with smaller batches

- Explicit regularization
- Implicit regularization
- Early stopping
- Ensembling
- Dropout
- Adding noise
- Bayesian approaches
- Transfer learning, multi-task learning, self-supervised learning
- Data augmentation

Early stopping

- If we stop training early, weights don't have time to overfit to noise
- Weights start small, don't have time to get large
- Reduces effective model complexity
- Known as early stopping
- Don't have to re-train

- Explicit regularization
- Implicit regularization
- Early stopping
- Ensembling
- Dropout
- Adding noise
- Bayesian approaches
- Transfer learning, multi-task learning, self-supervised learning
- Data augmentation

Ensembling

- Average together several models an ensemble
- Can take mean or median
- Different initializations / different models
- Different subsets of the data resampled with replacements -- bagging

- Explicit regularization
- Implicit regularization
- Early stopping
- Ensembling
- Dropout
- Adding noise
- Bayesian approaches
- Transfer learning, multi-task learning, self-supervised learning
- Data augmentation

Dropout

Dropout

Can eliminate kinks in function that are far from data and don't contribute to training loss

- Explicit regularization
- Implicit regularization
- Early stopping
- Ensembling
- Dropout
- Adding noise
- Bayesian approaches
- Transfer learning, multi-task learning, self-supervised learning
- Data augmentation

Adding noise

- to inputs
- to weights
- to outputs (labels)

- Explicit regularization
- Implicit regularization
- Early stopping
- Ensembling
- Dropout
- Adding noise
- Bayesian approaches
- Transfer learning, multi-task learning, self-supervised learning
- Data augmentation

Bayesian approaches

- There are many parameters compatible with the data
- Can find a probability distribution over them

 $Pr(\boldsymbol{\phi}|\{\mathbf{x}_i, \mathbf{y}_i\}) = \frac{\prod_{i=1}^{I} Pr(\mathbf{y}_i|\mathbf{x}_i, \boldsymbol{\phi}) Pr(\boldsymbol{\phi})}{\int \prod_{i=1}^{I} Pr(\mathbf{y}_i|\mathbf{x}_i, \boldsymbol{\phi}) Pr(\boldsymbol{\phi}) d\boldsymbol{\phi}}$

Prior info about parameters

Bayesian approaches

- There are many parameters compatible with the data
- Can find a probability distribution over them

Prior info about parameters

$$Pr(\boldsymbol{\phi}|\{\mathbf{x}_i, \mathbf{y}_i\}) = \frac{\prod_{i=1}^{I} Pr(\mathbf{y}_i|\mathbf{x}_i, \boldsymbol{\phi}) Pr(\boldsymbol{\phi})}{\int \prod_{i=1}^{I} Pr(\mathbf{y}_i|\mathbf{x}_i, \boldsymbol{\phi}) Pr(\boldsymbol{\phi}) d\boldsymbol{\phi}}$$

• Take all possible parameters into account when make prediction

$$Pr(\mathbf{y}|\mathbf{x}, {\mathbf{x}_i, \mathbf{y}_i}) = \int Pr(\mathbf{y}|\mathbf{x}, \boldsymbol{\phi}) Pr(\boldsymbol{\phi}|{\mathbf{x}_i, \mathbf{y}_i}) d\boldsymbol{\phi}$$

Bayesian approaches

- Explicit regularization
- Implicit regularization
- Early stopping
- Ensembling
- Dropout
- Adding noise
- Bayesian approaches
- Transfer learning, multi-task learning, self-supervised learning
- Data augmentation

Transfer learning

- Explicit regularization
- Implicit regularization
- Early stopping
- Ensembling
- Dropout
- Adding noise
- Bayesian approaches
- Transfer learning, multi-task learning, self-supervised learning
- Data augmentation

Data augmentation

Regularization overview

