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* Multiclass classification problem (discrete classes, >2 possible values)
e Convolutional network



Loss function

* Training dataset of / pairs of input/output examples:
1
{Xiv Yifi=1

or measures how bad model is:

L[¢7 f [Xia ¢]7 {Xia Yi 7{:1]

or for short:

L [¢] Returns a scalar that is smaller

when model maps inputs to
outputs better



Hidden
layer, hy
D, =14

Hidden
layer, ho
Dy =2

h; = a[8; + Qx|

hy; = a[8; + Q1hy]

h; = a|8; + Q2hy]
flx, @] = B3 + Qshg

Hidden
layer, hs
D; =3




Problem 1: Computing gradients

I I
Loss: sum of individual terms: L[¢] — Zéz — Z l[f[Xz, Qb], yz]
i=1 i=1
ol;|
SGD Algorithm: ¢t—|—1 VAN ¢t Z ¢t
1€ B4

Parameters:

¢ — {/807 ﬂ()?IBl) ﬂ171827 927/837 ﬂg}

% nd %

0By, 082,

Need to compute gradients



Why is this such a big deal?

* A neural network is just an equation:

y' = ¢y + dratio + Y11albio + O11x] + Y12a]f20 + O212] + Y13a[030 + O312]]
+ ¢halthao + Pa1alfi0 + O112] + Va2l + O212] + 238[b30 + O312]]
+ a0 + Ps1alfio + O112] + Ys2a[ba0 + O212] + Y33a[b30 + O312]]

* But it’s a huge equation, and we need to compute derivative
* for every parameter
 for every point in the batch
 for every iteration of SGD



Problem 2: initialization

b1

Stochastic S8 |
gradient desce,r,‘ A

10-10 0

25
-10

Gradient desciﬁ/"
0
®o

Where should we start the parameters before we commence SGD?




Gradients

* Toy model
* Background mathematics

* Backpropagation forward pass

* Backpropagation backward pass
* Algorithmic differentiation
* Code



Problem 1: Computing gradients

I I
Loss: sum of individual terms: L[¢] — Zéz — Z l[f[Xz, Qb], yz]
i=1 i=1
ol;|
SGD Algorithm: ¢t—|—1 VAN ¢t Z ¢t
1€ B4

Parameters:

¢ — {/807 ﬂ()?IBl) ﬂ171827 927/837 ﬂg}

% nd %

0By, 082,

Need to compute gradients



Algorithm to compute gradient efficiently

 Rumelhart, Hinton, and Williams (1986)



BackProp intuition #1:

Training
v ‘ . . B output, y %’)
SO0 R
‘/»‘ .
Training Hidden Hidden Hidden Output Toss. ]
input, x layer, hy layer, hs layer, hg flx, @] ’

Orange weight multiplies activation (ReLU output) in previous layer
* We want to know how change in orange weight affects loss

 |f we double activation in previous layer, weight will have twice the effect
Conclusion:



BackProp intuition #2:

@ 0 Q 04 Q5 Qs ?
O O O O

O @
O o O

Training Hidden Hidden Hidden Output

input, x layer, h; layer, hs layer, hs flx, @] Loss, !

To calculate how a small change in a weight or bias feeding into
hidden layer hy; modifies the loss, we need to know:

*how a change in layer h; changes the model output f
*how a change in model output changes the loss /



BackProp intuition #2:

SO o

Training Hidden Hidden Hidden Output
. Loss, [
input, x layer, hy layer, ho layer, hs flx, @]
To calculate how a small change in a weight or bias feeding into
hidden layer h, modifies the loss, we need to know:

*how a change in layer h, affects h;
*how h; changes the model output
*how this output changes the loss



BackProp intuition #2:

o £ i
O
O

Training Hidden Hidden Hidden Output

input, x layer, hy layer, ho layer, hs flx, @] Loss, |

To calculate how a small change in a weight or bias feeding into
hidden layer h; modifies the loss, we need to know:

*how a change in layer h, affects layer h,
*how a change in layer h, affects layer hs
*how layer h; changes the model output
*how the model output changes the loss



Gradients
* Backpropagation intuition

* Background mathematics

* Backpropagation forward pass

* Backpropagation backward pass
* Algorithmic differentiation
* Code



Toy function

flx, p| = B3 + w3 - cos| P + wa - exp [51 + wy - sin|By + wo - i’?]ﬂ
l; = (flzs, @) — yi)?

e Consists of a series of functions that are composed with each other.
* Unlike in neural networks just uses scalars (not vectors)
e “Activation functions” sin, exp, cos



Toy function

flx, p| = B3 + w3 - cos| P + wa - exp [51 + wy - sin|By + wo - i’?]ﬂ

i = (flzg, @] — yi)?

Derivatives
dcoslz] | Oexplz] Osin|z|
5, sin|z] 5, exp|z] 5, cos|z]



Gradients of toy function
flx, p| = B3 + w3 - cos [52 + Wy + €XpP [51 + wy - sin|By + wo - i’?]ﬂ

l; = (flag, ¢ — yi)?

We want to calculate:
How does a small
change in B3 change

the loss | for the i'th
example?

% % % % % % % %

and

0By’ Owg’ Of1 Owp’ 0By Ows’  Of3’ Ows




Gradients of composed functions

o 8] = s+ s -cos B+ o - exp[31 + 1 - sinlf + o -]

l; = (flag, ¢ — yi)?

Calculating expressions by hand:
* some expressions very complicated.
* obvious redundancy (look at sin terms in bottom equation)

%

8w0

= —2 (53 + W3 - CO8 {52 T Wa - €eXPp [/5'1 + wy - sin[By + wp - fl?z]]} — yz’)

‘WiWaws + T; - COS|By + wo + T;] - exp [51 + w1 - sin|By + wo - ;]

.sin [52 + woy - exp [51 + w1 - sinfBy + wo - 961]}



Forward pass

. 8] = Bs + s - cos | By + wz - exp[By +wi - sinffo + wo - o]

l; = (flzg, @] — ys)°

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities



Forward pass

. 8] = Bs + s - cos | By + wz - exp[By +wi - sinffo + wo - o]

l; = (flzg, @] — ys)°

1. Write this as a series of L o _ . h

intermediate calculations fo=Po+wo - Ja =Pzt wa-h
h1 = sin|fy] hs = cos| f2]

2. Compute these f1 =01 +w " f3 = 3 +ws3 - hs

intermediate quantities

ho = exp|fi] b= (fs— i)



Forward pass

. 8] = Bs + s - cos | By + wz - exp[By +wi - sinffo + wo - o]

l; = (flzg, @] — ys)°

1. Write this as a series of _ . _ h

intermediate calculations fo=Po+wo - fa= P2t we-ho
h1 = sin|fy] hs = cos| f2]

2. Compute these SJi=01+tw -y f3 = B3+ ws - hs

intermediate quantities )
ha = exp|fi] Ci=(fz —ui)”



Backward pass

. 8] = Bs + s - cos | By + wz - exp[By +wi - sinffo + wo - o]

l; = (flzg, @] — ys)°

1. Compute the

derivatives of the loss 9 & o & P gi O Ez’ o Ei o gi O Ei

with respect to these and ——
intermediate quantities, Ofs’ 0Ohs' Ofy 0Ohy 0fit Ohy d fo

but in reverse order.




Backward pass

. 8] = Bs + s - cos | By + wz - exp[By +wi - sinffo + wo - o]

l; = (flzg, @] — ys)°

1. Compute the

derivatives of the loss 9 & o & P 57; O EZ_ o Ei o &' O Ei

with respect to these and ——
intermediate quantities, Ofs’ 0Ohs’ 0Ofy 0Ohy’ Of1 Ohy d fo

but in reverse order.

O OO B—B—B—C
9 fo Oh1 0 f1 Oho df2 Ohs O0fs3 v




Backward pass

1. Compute the Jo = Bo+ wo - x; Jo = P2 +wa - h
derivatives of the loss hiy = Sin[fo] hs = COS[fQ]

with respect to these

intermediate quantities, h=h+w - - f3 =03+ ws - h3
but in reverse order. ho = exp|fi] b= (fs — %)2-

e The first of these
derivatives is trivial 8€ ;

8f3 (fS_yz)




Backward pass

1. Compute the Jo = Bo+ wo - x; Jo = P2 +wa - h
derivatives of the loss hi = sin[fo] hs = cos[fa]

with respect to these
intermediate quantities, h=0+tw M J3 = P3+tws-h3

but in reverse order. ho = exp|fi] b = (f3 — %)2-

* Th d of th
derivativesis ol;  Of3 04
computed via the —
chain rule ahg ahg afg

S

How does a small
change in h; change |;?




Backward pass

1. Compute the Jo = Bo+ wo - x; Jo = P2 +wa - h
derivatives of the loss hiy = Sin[fo] hs = COS[fQ]

with respect to these B

intermediate quantities, h=h+w - - f3 =03+ ws - h3
but in reverse order. ho = exp|fi] b= (fs — %)2-

* The second derivative 862 afg 86@

is computed via the

chain rule ahg — ahg ﬁfg\

How does a small
change in f5 change I;?

How do.es a small , How does a small
change in h3 change I;: change in h; change f5?



Backward pass

1. Compute the Jo = Bo+ wo - x; Jo = P2 +wa - h
der;vatives of thehloss hi = Sin[fo] hy = COS[fQ]

with respect to these B

intermediate quantities, h=h+w - - f3 =03+ ws - h3
but in reverse order. ho = exp|fi] b = (f3 — %)2-

* Th d of th
derivativesis ol;  0fs 01
computed via the —
chain rule ahg ahg afg

/ Already computed!

How does a small
change in h; change |;?




Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

 The remaining
derivatives also
calculated by further
use of chain rule

fo = Bo+wo - x;

hl — Sin[fo]
Ji=01+wi -
h2 — exp[fl]

Ofy  0fz \Ohs 0f3

)

fo = B2+ wa - ho

hs = cos| fs]
J3 = P3+tws-h3
b= (f3 — yi)2'



Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

 The remaining
derivatives also
calculated by further
use of chain rule

fo = Bo+wo - x;

hl — Sin[fo]
Ji=01+wi -
h2 — exp[fl]

Jo = P2 +wa - ho
hs = cos| fs]

J3 = P3+tws-h3
b= (fs — )

Ofy  0fz \Ohs 0f3

/

-sin[f,]

)
\

Already computed!



Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

 The remaining
derivatives also
calculated by further
use of chain rule

Jo = Bo+ wo - x; Jo = B2 + wa - ho
h1 = sin|fo] hz = cos| f2]

Ji=p1+twr- M J3 = P3+tws-h3
ho = exp|fi1] U= (fs— i)’

ol;  Ohs (@ fs 8&-)

df2 - Of2 \ Ohs 0f3
ot Ofy (Ohs 0fs 0L,
Ohs  Ohy \ 9fy Ohs O



Backward pass

ol;
dfo

Ohi Of1 Oha O f2 Ohs Of3

1. Compute the Jo = Bo+ wo - x; Jo = P2 +wa - h
derivatives of the loss hi = Sin[fo] hy = COS[fQ]
with respect to these
intermediate quantities, h=h+w - - f3 =03+ ws - h3
but in reverse order. ho = exp|fi] b= (fs — %)2-
Th . o; (8 f3 8&-)
. e remaining
derivatives also 0f2 8f2 Ohs Ofs
calculated by further oti _ 9 ((%3 0fs (%’i)
use of chain rule Oh 8h2 0f2 Ohs O fs3
ol; (an Ohs Ofs 3@)
0 fi (‘3 f1 \Ohg Ofs Ohg 0f3
ol;  Of1 [ Ohg Ofz Ohg Of3 OF;
Oh1 8h1 0f1 Oho Ofy Ohs Ofs3

Of1 Oho Ofy Ohs Of3 3&)



Backward pass

1. Compute the Jo = Bo+ wo - x; Jo = P2 +wa - h
de&vatives f[n;thtiloss hi = Sin[fo] hy = COS[fQ]

with respect to these o

intermediate quantities, h=h+w - - f3 =03+ ws - h3
but in reverse order. ho = exp|fi] b = (f3 — %)2-

* The remaining
derivatives also
calculated by further
use of chain rule

Ohy ofr Ohy 0 f2 Ohg 9fs
00\ _Ofo (80, \ Oh1 (8¢;\_Of1 (06, _Oh2 (8¢;\_Of2 (8¢;\_Ohs (¢, /.
0 fo Oh1 0 f1 Oho 0 f2 Ohs O0fs ?




Backward pass

2. Find how the loss fo = Bo +wo -z fo = P2 +wa - ho
changes as a function of hiy = Sin[fo] hs = COS[fQ]
the parameters [ and o.
g J1=01+wi M J3 =083 +ws-hs
ho = exp| fi] b= (fs —vi)°
e Another application of
the chain rule 8& 6f]€ ({ML

/ How does a small
change in f; change [;?

How does a small How does a small

change in o, change [;? change in o, change f;?



Backward pass

2. Find how the loss fO:50+WO‘$i f2:52‘|’w2'h2
changes as a function of hiy = Sin[fo] hs = COS[fQ]
the parameters 3 and o.
i ’ fi =B+ wn by fa = Ba +ws - h
ho = exp|fi] b= (f3 —yi)*

* Another application of

the chain rule 8& o 6f]€ ({ML

&uk N awk 8fk \

Already calculated in
part 1.

How does a small h
change in ®, change [;?



Backward pass

2. Find how the loss Jo = Bo +wo - x; f2 = B2+ w2 - ho
changes as a function of h, = sin[fo] hs = cos| /2]
the parameters 3 and o.
Ji=01+wi - J3 = B3+ w3 - h3
ha = exp|fi] b= (fs —y:)°.
e Another application of
the chain rule 8& 6f]€ EML
* Similarly for 3 —
parameters aCUk awk afk

o, f ot
08 0Bk Ofk




Backward pass

2. Find how the loss Jo = Bo + wo - x; Jo = P2 +wa - ho
changes as a function of h, = sin[fo] hs = cos| /2]
the parameters 3 and o.

Ji=01+wi - J3 = B3+ w3 - h3

he = exp|fi] b= (fs —ui)°.




Gradients

* Backpropagation intuition
* Toy model

* Backpropagation forward pass

* Backpropagation backward pass
* Algorithmic differentiation

* Code



Matrix calculus

Scalar function f[] of a vector a

of
oa




Matrix calculus

Scalar function f[] of a matrix A

- Of of of 7
~ _ dai1 daio dai1s
a11 Q12 Aa13 of of of
A _ |21 G22 G23 of _ |0en  Oazz Oax
— A of of of
as3q a32 a33 OA Odasi daso dasz3
| A41 Q42 Q43 of of of
8a41 8&42 6CL43




Matrix calculus

Vector function f[] of vector a

a "0f Of2  Ofs”

_f ) 8&1 8a1 8@1

1 as of 9fi Of2 9fs

f: f2 A — . aCLQ 8(12 8(12
a3 Ja | ofi 0 of

f3 8a3 8a3 6a3

- | 4_ 9fi Of2 Ofa
_8a4 60,4 80,4_




Comparing vector and matrix

Scalar derivatives:

o _

Ohn 8—h3(53 + w3h3) = ws

I3 = B3 + wshs



Comparing vector and matrix

Scalar derivatives:

0 0
J3 = B3 + wshg 8—{2 — 8—h3(53+w3h3) — W3
Matrix derivatives:
of; 0

— ,33 -+ Qghg (9h3 — 8h3 (/33 =+ QBhS) Qg



Comparing vector and matrix

Scalar derivatives:

0fs o,
_ B hs = 1
Matrix derivatives:
Ofs o,

f; = 35 + Qs3hs 0B, 5’—53(63 + Q3h3) =1



Homework: (keeners only)

Consider function:

Can write as:

Now calculate:

o _
da

Write final expression as a matrix

f = Ba

fi = Z Bija;
J

" 01 0f2
8&1 8@1
0fir 9Of
aa2 6a2
Of1  Of
8&3 8a3
Of1  Of2

_8a4 6&4

f1
f2
/3




Gradients

* Backpropagation intuition
* Toy model
* Background mathematics

* Backpropagation backward pass
* Algorithmic differentiation
* Code



The forward pass ©

Training
Q) 0 Q0 1 Q 2 Q 3
‘ output, y ﬁ’)
=0 <

A

<7 <7
OO > 8>@
‘A /
Training Hidden Hidden Hidden Output Loss. [
input, x layer, hy layer, ho layer, hg flx, @] ’

1. Write this as a series of

intermediate calculations fo = By + Qox;
h; = al[fy]
f; = /31 + Q1hy
hy, = a|fy]
fy = /82 + Q2ho
h; = a[fs]
f3 = B3 + Qshs

gi — 1[f37 yZ]



Training
h {2 {3 output, y %y)
=80

The forward pass

Training Hidden Hidden Hidden Output Loss. ]
input, x layer, h; layer, ho layer, hs flx, @] ’
1. Write this as a series of
intermediate calculations fo = By + Qox;
h; = alf
2. Compute these 1 [ O]
intermediate quantities f; =06, + Q1hy
h2 = a[fl]
fo = 3, + Q2h,
h3 = a[fg]
f3 = B85 + Q3hs

C; = 1f3, 3]



Training
4 {2 {3 output, y %y)
=80

The backward pass

Training Hidden Hidden Hidden Output [ Z
input, x layer, h; layer, ho layer, hs flx, @] 055,
1. Write this as a series of 0Y;
intermediate calculations fo = By + Qox; Of 3
2. Compute these hy = alfo) 0l; ohs 0f; 0V;
intermediate quantities f1 =06+ Q21hy 3f2 — 8f2 3h3 3f3
h, = alf
3. Take derivatives of ’ = 0l Ohs Ofy ([ Ohs 0f; 0/;
out : fo = By + Q2hy —
put with respect to of of, oh of, oh- Of
intermediate quantities h; = a[f2] 1 1 2 2 3 Y13
f3 :IBS + Q3hsg (‘M _ 8h1 8f1 th an 8h3 8f3 (%z
0 = 1[f3, y;] ofy 0fy 0h, 0f; Ohy 0fy Ohs 0fy



Gradients

* Backpropagation intuition
* Toy model
* Background mathematics

* Backpropagation forward pass

* Algorithmic differentiation
* Code



Training
4 {2 {3 output, y %y)
=80

The backward pass

Training Hidden Hidden Hidden Output [ Z
input, x layer, h; layer, ho layer, hs flx, @] 055,
1. Write this as a series of 0Y;
intermediate calculations fo = By + Qox; Of 3
2. Compute these hy = alfo) 0l; ohs 0f3 0¢;
intermediate quantities f1 =06+ Q21hy 3f2 — 8f2 3h3 3f3
h, = alf
3. Take derivatives of ’ = 0l Ohs Ofy ([ Ohs 0f; 0/;
out : fo = By + Q2hy —
put with respect to of of, oh of, oh- Of
intermediate quantities h; = a[f2] 1 1 2 2 3 Y13
f3 :IBS + Q3hsg (‘M _ 8h1 8f1 th an 8h3 8f3 (%z
0 = 1[f3, y;] ofy 0fy 0h, 0f; Ohy 0fy Ohs 0fy



Yikes!

* But:

Of;3 0

Q-h Qr
8h3 8h3 (B3 + Q3hg) = Q3

e Quite similar to:

Ofs 0

8h3 — 8h3 (B3 + wshs) = ws



The backward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

Trainin
3 %, {5 output,gy %y)
O Q\@
=0
Training Hidden Hidden Hidden Output [ Z
input, x layer, h; layer, ho layer, hs flx, @] 055,
of 0
0& 5’?3 — 5’T (,33 + Qghg) = Qg
f() — ,80 + Q()XZ' (9f3 3 3
by = alfo d;  Ohy| 0fs AL,
=P b Of,  Ofy Ohg Of;
he = aly £, [Ohs Of; O
fo = By + Q2hy 0t — oh; Ot ( 3 3 Z)
hy — alf] of, _ Of; Oh, \ f, Ohs Of;
f3 :53 + Q3hsg (‘M _ 8h1 8f1 th an 8h3 8f3 (%z
0, = 1[fs, yi] of, _ Of, oh; \ Of, Ohy Of, Ohs Ofs



Training
4 {2 {3 output, y %y)
=80

The backward pass

Training Hidden Hidden Hidden Output [ Z
input, x layer, h; layer, ho layer, hs flx, @] 055,
1. Write this as a series of 0Y;
intermediate calculations fo = By + Qox; Of 3
2. Compute these hy = alfo) 0l; ohs 0f; 0V;
intermediate quantities f1 =06+ Q21hy 3f2 — 8f2 3h3 3f3
h, = alf
3. Take derivatives of ’ = 0l Ohs Ofy ([ Ohs 0f; 0/;
out : fo = By + Q2hy —
put with respect to of of, oh of, oh- Of
intermediate quantities h; = a[f2] 1 1 2 2 3 Y13
f3 :IBS + Q3hsg (‘M _ 8h1 8f1 th an 8h3 8f3 (%z
0 = 1[f3, y;] ofy 0fy 0h, 0f; Ohy 0fy Ohs 0fy



Derivative of RelLU

2.0

Output
o
o

RelU|z]




Derivative of RelLU

2.0

Output
o
o

RelU|z]

Iz > 0]

“Indicator function”



Derivative of RELU

1. Consider: where: aq bl
a= |[az b= |b
a = ReLU|b| x
|43 b3
2. We could equivalently write: 3. Taking the derivative
P i ] I [ Ja da das | B
a1 ReLU|bq | 9 gbi gbf gbf I[by > 0]
Qo | = ReLLU _bg_ b gzg g%f gii;” — 8 I[[b2 > O]
- - - g ai a as
as ReL.U b3 | 9b;  db;  9bs| L

4. We can equivalently pointwise multiply by diagonal

I[b > 0|®




The backward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

Q4 Q2 23

Training
output, y %y)

> 8>@
o=
Training Hidden Hidden Hidden Output Loss. [
input, x layer, hy layer, ho layer, hg f[X, ¢] ’
o, Ilfy > 0]
fo = By + Qox; Of;
by = alfo) 0;  Ohs Of; 0L,
f=p by Of; | Of; Ohy Of
b2 =alf] dhy Of; Of
f2 — ,32 —|— QQhQ 86% — 8h2 an ( 3 3 : >
h3 — a[fg] afl afl 8112 an 8h3 6f3
f3 :53 + Q3hsg (‘M _ 8h1 8f1 th an 8h3 8f3 (%z
0, = s, y,] of,  Of, oh, \ Of, Ohy Of, Ohy Ofs



The backward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

4. Take derivatives w.r.t.
parameters

— /30 + Qox;
= a[fg]
— ,31 + thl

,82 + QZhQ

= (B3 + Q3h3

= 1[f3, y4]

Training
input, x

O
=

Q5 Q3

Training

output, y %y)

5

Hidden Hidden Hidden
layer, hy layer, ho layer, hg
ol;  Ofy 0L
0B, 0By Of;
0
= ——= (B + Qrhy
i
- Ofy

Output
flx, ¢]

Loss, [



The backward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

4. Take derivatives w.r.t.
parameters

Training Hidden
input, x layer, hy
= By + Qox; 0Y;
— a[fO] 0
= B + Q1hy
= a|fy]
= By + shy
= a|fy]
= B3 + Q3h;
=13,y

O
=

Hidden
layer, ho

Q5 Q3

Hidden
layer, hj

oty 0,

0
~ 0, k
0%
8fk

~ 0Q, Of

(/Bk + Qkhk)

Training

output, y %y)
/8>@

Output
flx, ¢]

%
oty

Loss, [



Backprop summary

Forward pass: We compute and store the following quantities:

fo = By + Qox;
h, = a[fk_l] k € {1,2,...K}
f. = B+ Qrhy. kE{l,Q,...K}



Backprop summary

Forward pass: We compute and store the following quantities:

fo = By + Qox;
h, = a[fk_l] k € {1,2,...K}
f. = B+ Qrhg. kE{l,Q,...K}



Backprop summary

Backward pass: We start with the derivative 0¢; /0f of the loss function ¢; with respect
to the network output fx and work backward through the network:

= ke {K,K—-1,...1
8/Bk; 8fk. = { ’ 9 }
o o ke {K,K—1,...1}
oti  _ 7 0L
s M[fx—1 > 0] © (Qk m) ; ke {K,K—1,...1} (7.13)

where ® denotes pointwise multiplication and [[f;,_; > 0] is a vector containing ones
where f;,_ is greater than zero and zeros elsewhere.



Backprop summary

Backward pass: We start with the derivative 0¢; /0f of the loss function ¢; with respect
to the network output fx and work backward through the network:

= ke {K,K—-1,...1
8/Bk; (9fk = { ’ 9 }
o o ke {K,K—1,...1}
oti  _ 7 0L
s M[fx—1 > 0] © (Qk m) ; ke {K,K—1,...1} (7.13)

where ® denotes pointwise multiplication and [[f;,_; > 0] is a vector containing ones
where f;,_ is greater than zero and zeros elsewhere.

G




Backprop summary

Backward pass: We start with the derivative 0¢; /0f of the loss function ¢; with respect
to the network output fx and work backward through the network:

o0 oL
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or; O,
ETA — H[fk_1 > O] ® <ka @fk) y
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where ® denotes pointwise multiplication and [[f;,_; > 0] is a vector containing ones
where f;,_ is greater than zero and zeros elsewhere.




Backprop summary

Backward pass: We start with the derivative 0¢; /0f of the loss function ¢; with respect
to the network output fx and work backward through the network:
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where ® denotes pointwise multiplication and [[f;,_; > 0] is a vector containing ones
where f;,_ is greater than zero and zeros elsewhere.




Backprop summary

Backward pass: We start with the derivative 0¢; /0f of the loss function ¢; with respect
to the network output fx and work backward through the network:

ol; ol
= = - ke{K,K—-1,...1
5 = o €K K~ 1,...1)
ot Ol g
5o = r i ke {K,K—1,...1}
= B —1,... 1
of H[fk 1 >O]@ <ka 8fk), kE{K,K 1, 1} (7 3)

where ® denotes pointwise multiplication and [[f;,_; > 0] is a vector containing ones
where f;,_4 is greater than zero and zeros elsewhere. Finally, we compute the derivatives

with respect to the first set of biases and weights:

o, oL
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o, ol
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Pros and cons

* Extremely efficient
* Only need matrix multiplication and thresholding for ReLU functions

* Memory hungry — must store all the intermediate quantities

e Sequential
e can process multiple batches in parallel
* but things get harder if the whole model doesn’t fit on one machine.






Gradients

* Backpropagation intuition
* Toy model
* Background mathematics

* Backpropagation forward pass

* Backpropagation backward pass

 Code



Algorithmic differentiation

* Modern deep learning frameworks compute derivatives automatically
* You just have to specify the model and the loss

* How?
* Each component knows how to compute its own derivative
e RelLU knows how to compute deriv of output w.r.t. input

* Linear function knows how to compute deriv of output w.r.t. input
* Linear function knows how to compute deriv of output w.r.t. parameter

* You specify how the order of the components
* It can compute the chain of derivatives

* Works with branches as long as it’s still an acyclic graph



Gradients

* Backpropagation intuition
* Toy model
* Background mathematics

* Backpropagation forward pass

* Backpropagation backward pass
* Algorithmic differentiation
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Initialization

He initialization

Interlude: Expectations

Show that E[fz’] — 0

Write variance of pre-activations f” in terms of activations h in previous layer
Dy,

O'JQc/ — 0?2 ZE [hﬂ

J=1
Write variance of pre-activations f’ in terms of pre-activations f in previous layer

Dhag%a?c
2

O'f/—



Initialization

* Consider standard building block of NN in terms of preactivations:
tr, = By + Qrhy
— /Bk; T Qka[fk—l]

* How do we initialize the biases and weights?

* Equivalent to choosing starting point in Gabor/Linear regression
models



Initialization

* Consider standard building block of NN in terms of preactivations:

fr = B, + Qrhy
— /Bk T ﬂka[fk—l]

/Bk:O

Set all the biases to O

Weights normally distributed
* mean0
* variance 0522

What will happen as we move through the network if aé is very small?
What will happen as we move through the network if aé is very large?



Backprop summary

Backward pass: We start with the derivative 0¢; /0f of the loss function ¢; with respect
to the network output fx and work backward through the network:

ol; ol
= = - ke{K,K—-1,...1
5 = o €K K~ 1,...1)
ot Ol g
5o = r i ke {K,K—1,...1}
= B —1,... 1
of H[fk 1 >O]@ <ka 8fk), kE{K,K 1, 1} (7 3)

where ® denotes pointwise multiplication and [[f;,_; > 0] is a vector containing ones
where f;,_4 is greater than zero and zeros elsewhere. Finally, we compute the derivatives

with respect to the first set of biases and weights:
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Initialization

Need for initialization

Interlude: Expectations

Show that E[fz’] — 0

Write ariance of pre-activations f” in terms of activations h in previous layer
Dy,

O'JQc/ — 0?2 ZE [hﬂ

J=1
Write variance of pre-activations f’ in terms of pre-activations f in previous layer

Dhag%a?c
2

O'f/—
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Figure 7.4 Weight initialization. Consider a deep network with 50 hidden layers
and Dy, = 100 hidden units per layer. The network has a 100 dimensional input x
initialized with values from a standard normal distribution, a single output fixed
at y = 0, and a least squares loss function. The bias vectors 3, are initialized
to zero and the weight matrices €2; are initialized with a normal distribution
with mean zero and five different variances og € {0.001,0.01,0.02,0.1,1.0}. a)

<— Exploding gradients

<—— Vanishing gradients



He initialization (assumes RelLU)

* Forward pass: want the variance of hidden unit activations in layer
k+1 to be the same as variance of activations in layer k:

o 2
O-Q — D < Number of units at layer k
h

* Backward pass: want the variance of gradients at layer k to be the
same as variance of gradient in layer k+1:

2

0'522 — < Number of units at layer k+1

Dy
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Figure 7.4 Weight initialization. Consider a deep network with 50 hidden layers
and Dy, = 100 hidden units per layer. The network has a 100 dimensional input x
initialized with values from a standard normal distribution, a single output fixed
at y = 0, and a least squares loss function. The bias vectors 3, are initialized
to zero and the weight matrices €2; are initialized with a normal distribution
with mean zero and five different variances og € {0.001,0.01,0.02,0.1,1.0}. a)



Initialization

Need for initialization

He initialization

Show that E[fz’] — 0

Write variance of pre-activations f” in terms of activations h in previous layer
Dy,

O'JQc/ — 0?2 ZE [hﬂ

J=1
Write variance of pre-activations f in terms of pre-activations f in previous layer

Dhag%a?c
2

O'f/—



Expectations

E[slel] = [ elelPr(z)ds,

Interpretation: what is the average value of g[x] when taking into account the probability of x?

Could approximate, by sampling many values of x from the distribution, calculating g[x], and taking average:

E{g[m]} ~ % Z glz*] where xr. ~ Pr(z)

n=1



Expectations

Function gJe| Expectation
7 mean, [
B kth moment about zero
lr—i)™ kth moment about the mean
(x — p)? variance
(z — p)° skew
(x — p)* kurtosis

Table B.1 Special cases of expectation. For some functions g[z], the expectation
E[g[z] is given a special name. Here we use the notation u, to represent the mean
with respect to random variable z.



Rules for manipulating expectation

+ g:v = E f[az] +E [g[x]}

E[f[az] gy =E f[a:] E[g[y]] if x,y independent



Rule 1




Rules for manipulating expectation

+ g:v = E f[az] +E [g[x]}

E[f[az] gy =E f[a:] E[g[y]] if x,y independent



Rule 2




Rules for manipulating expectation

+ g:v = E f[az] +E [g[x]}

E[f[az] gy =E f[a:] E[g[y]] if x,y independent



Rule 3




Rules for manipulating expectation

+ g:v = E f[az] +E [g[x]}

E[f[az] gy =E f[a:] E[g[y]] if x,y independent



Independence
Pr(z,y)

Pr(z|ly = y1)

Pr(z|y = y2)

x
. Pr(zly) = Pr(z)

Probability of x and y P’I“(y‘ilf) — P’l“(y)



Independence
Pr(z,y)

Pr(zly = y1)

Pr(z|ly = ys2)

X

Py X, — Prilx ) Pr
Probability of xand y



Rule 4

// y| Pr(z,y)dzdy Because
/ independent
// y)dxdy

— [1 :P<>da:/ IPr(y)dy

=K [f[lj} I [g [y]} if x,y independent




Now let’s prove:

Keeping in mind:




Now let’s prove:

Keeping in mind:




Rule 1: I k: =k
Rule 2: ]E[k glz]| =k E[g[ﬂv]}

Rule 3: E[f[m] + g[x] =
Def'n Elz] = p

(x — p?)] = Elz? — 2zp + 4]




Rule 1: BlR =
Rule 2: E[k glz]] = k'E[g[ﬂvﬂ
Rule 3: E[f[:{:] —|—g[a¢]: = ]E[f[x]} —|—E[g[az]}
Def’n Elx] = u
2 S ..2 2
(z —p%)] =Elz” = 2zp + p°)

2% — E[2zp] + B




Rule 1: I k: =k
Rule 2: E[k glz]| =k E[g[ﬂv]}

Rule 3: E[f[w] + g[x] =
Def'n Elx] = p

(z — p?)] = E[z? — 2zp + p?]

= Elz?] — E[2zpu] + E[u
= E[z?] — 2uE[z] + p*




Rule 1: I k: =k
Rule 2: E[k glz]| =k E[g[ﬂv]}

Rule 3: E[f[w] + g[x] =
Def'n Elx] = p

(z — p?)] = E[z? — 2zp + p?]

— B[] — El2e] + B[
— 43:552: — 2uE|x| + ,LLQ
= E[z?] — 21 + p°




Rule 2:

Rule 3: E[f[w] + g[x]

Rule 1: E|k| =k

E|k-gla]| = k- E|gle]]

Elz] = p

et
(z — p*)] = E[z* — 2zp 4 p°]
_ E[2?] - E[2uy] + B[]
= B[] — 2uB[e] + 2
= Ef2”] — 24" + 7
=E[”] — 47




Rule 2:

Rule 3: E[f[w] + g[x]

Rule 1: Elk| =k

E|k-gla]| = k- E|gle]]

Elz] = p

Def’n
(z — p*)] = E[z* — 2zp 4 p°]
= E[z°] — E[2zp] + E[p”]
= E[z°] — 2uE[x] + p°
= E[z°] — 2p* +
= E[2"] — p°
= E[z?] — Elz]*




Initialization

Need for initialization

He initialization

Interlude: Expectations

/
Elf;] =0
* Write variance of pre-activations f” in terms of activations h in previous layer
Dy,
2 _ 2 2
0 = 04 ZE [hj}
j=1

Write variance of pre-activations f’ in terms of pre-activations f in previous layer
2 2
DhO'QO'f
2

O'f/—



Initialization
* Consider standard building block of NN in terms of preactivations:

fr = B, + Qrhy
— /Bk T ﬂka[fk—l]

/Bk:O

e Set all the biasesto O

* Weights normally distributed
* mean0
* variance 0522

 What will happen as we move through the network if Ué is very small?
 What will happen as we move through the network if 0522 is very large?



Aim: keep variance same between two layers

f' =034+ Qh

Consider the mean of the pre-activations:

Dy
E[ff]=E |8+ ) Qijh;
j=1




Rule 1: Elk] =Fk
Rule2:  E|k-gla]| = k- E[gla]]
Rule 3: E[ffa] + gle]| = E[flz] + E[gfal]
Rule 4 E[f[:c]gy :Ef[x]E[g[y]] if x,y independent
Dy,
E[f{] =E |8+ ) Qijh;
j=1

=K 8] + zh:E 2505

71=1




Rule 1: Blk] =k
Rule 2 k- gfa]| = k- E[ge]]
Rule3: E [f[x] +glz]| =FE :f[:z:]: +E [g[aﬁ]]
Rule 4 fzlgly)| =E|fz]|Elgly)| i 2,y independent
. ]
Elf;] =E 5¢+Zﬂijhg’
j=1




Rule 1: Bk =Fk

Rule 2 E[k gle]| =k E[g[w]}

Rule 3 E[f[x] +gla]| = E f[x]: +E[g[a¢]]

Rule 4: E[f[x]g:y:: :E:f[;c]:E[g[y]] if x,y independent

Set all the biasesto 0 Dy,

Weights normally distributed
mean O Dy,

variance 0§ =0+ Z 0-Elhj]=0



Initialization

Need for initialization
He initialization
Interlude: Expectations
Show that E[fz’] — 0

Dy,
2 _ 2 2
0 = 04 ZE [hj}
j=1
Write variance of pre-activations f’ in terms of pre-activations f in previous layer
2 2
DhO'QO'f
2

0-]20/ —




Aim: keep variance same between two layers

f' =034+ Qh
h = alf|,

7h = B[]~ ELf))

2 [(2 — 1)?] = Efs?) — E




f[x]gjyj: :E_f[x]:E[g[y]] if ,y independent

Set all the biasesto 0

Weights normally distributed
mean O

variance 0§



f[x]gjyj: :E_f[x]:E[g[y]] if ,y independent

Dy, 2
j=1
_ 0 -
Dy,
=E (Z Qyjh;
Set all the biases to 0 j=1

Weights normally distributed
mean O

variance 0§



Ruled: g [f[:c] glyl| = E|fl2]|E [g[y]] if z,y independent
o = E[f*] - E[f]]?
_ .
Dy,
=E || 8+ Z Qijih; —0
j=1
_ 0 -
Dy,
=E (Z Qyjh;
Set all the biases to 0 J=1
Dy,
_ 2 2
Weights normally distributed _ ZE [Qw} I [hj]
mean O J=1

variance g§



flz]gly]] = E ﬂx{jE{ghA] if ,y independent

Dy,
j=1
_ 0 -
Dy,
=E | ) Qijhy
Set all the biases to 0 j=1
Dy,
_ 2 2
Weights normally distributed _ ZE [Qw} I [hj]
mean 0 J=1
variance g§ Dy, Dy,



Initialization

Need for initialization
He initialization
Interlude: Expectations

Show that E[fz’] — 0
Write variance of pre-activations f” in terms of activations h in previous layer

Dy,
O'JQc/ — 0?2 ZE [hﬂ
j=1
Dy o202
0-]20/ — et /

2



Dy,
0]2,:, = O'g22 ZE [hﬂ
j=1

Dy, 00
0322/ ReLU[f;)2Pr(f;)df;

=177~

Dy, 00
03y / ALf; > 01f,)>Prf,)df,
j=177°




Aim: keep variance same between two layers

2 2
Cj:f’ — 23
Should choose:
2
of = —

This is called
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Figure 7.4 Weight initialization. Consider a deep network with 50 hidden layers
and Dy, = 100 hidden units per layer. The network has a 100 dimensional input x
initialized with values from a standard normal distribution, a single output fixed
at y = 0, and a least squares loss function. The bias vectors 3, are initialized
to zero and the weight matrices €2; are initialized with a normal distribution
with mean zero and five different variances og € {0.001,0.01,0.02,0.1,1.0}. a)



import torch, torch.nn as nn
from torch.utils.data import TensorDataset, DatalLoader
from torch.optim.lr_scheduler import StepLR

# define input size, hidden layer size, output size

D_i, D_k, D_o = 10, 40, 5
O rC C O e # create model with two hidden layers
model = nn.Sequential(
nn.Linear(D_i, D_k),
nn.ReLUQ),
nn.Linear(D_k, D_k),
nn.ReLU(),
nn.Linear(D_k, D_o))

* Define a neural network # He initialization of weights
o . . e e, . . def weights_init(layer_in):
* Initialize params with He initialization if ietnetance(layer in, un.Linear):
nn.init.kaiming_uniform(layer_in.weight)

° Define IOSS fu nction layer_in.bias.data.fill_(0.0)

model.apply(weights_init)

® Choose Optimization algorithm # choose least squares loss function
criterion = nn.MSELoss()

i Choose initial Iea rning rate # construct SGD optimizer and initialize learning rate and momentum

optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum=0.9)

) Choose Iearning rates Schedule # object that decreases learning rate by half every 10 epochs

scheduler = StepLR(optimizer, step_size=10, gamma=0.5)

[ ]
Make Some random data # create 100 dummy data points and store in data loader class
X = torch.randn(100, D_i)

* Train for 100 batches y = torch.randn(100, D_o)

data_loader = DataLoader(TensorDataset(x,y), batch_size=10, shuffle=True)

# loop over the dataset 100 times
for epoch in range(100):
epoch_loss = 0.0
# loop over batches
for i, data in enumerate(data_loader):
# retrieve inputs and labels for this batch
x_batch, y_batch = data
# zero the parameter gradients
optimizer.zero_grad()
# forward pass
pred = model(x_batch)
loss = criterion(pred, y_batch)
# backward pass
loss.backward()
# SGD update
optimizer.step()
# update statistics
epoch_loss += loss.item()
# print error
print(f'Epoch {epoch:5d}, loss {epoch_loss:.3f}')
# tell scheduler to consider updating learning rate
scheduler.step()



PyTorch code

* Define a neural network

* Initialize params with He initialization
* Define loss function

* Choose optimization algorithm

* Choose initial learning rate

* Choose learning rates schedule
 Make some random data

e Train for 100 batches

import torch, torch.nn as nn
from torch.utils.data import TensorDataset, Dataloader
from torch.optim.lr_scheduler import StepLR

# define input size, hidden layer size, output size
D_i, Dk, Do = 10, 40, 5
# create model with two hidden layers
model = nn.Sequential(
nn.Linear(D_i, D_k),
nn.RelLU(),
nn.Linear(D_k, D_k),
nn.ReLU(),
nn.Linear(D_k, D_o))

# He initialization of weights
def weights_init(layer_in):
if isinstance(layer_in, nn.Linear):
nn.init.kaiming uniform(layer_in.weight)
layer_in.bias.data.fill_(0.0)
model.apply(weights_init)

# choose least squares loss function

criterion = nn.MSELoss()

# construct SGD optimizer and initialize learning rate and momentum
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum=0.9)
# object that decreases learning rate by half every 10 epochs

scheduler = StepLR(optimizer, step_size=10, gamma=0.5)

# create 100 dummy data points and store in data loader class

X = torch.randn(100, D_i)

y = torch.randn(100, D_o)

data_loader = Dataloader(TensorDataset(x,y), batch_size=10, shuffle=True)

# loop over the dataset 100 times
for epoch in range(100):
epoch_loss = 0.0

¢ TAamnarm Asray hRadt~hAacs



PyTorch code

* Define a neural network

* Initialize params with He initialization
* Define loss function

* Choose optimization algorithm

* Choose initial learning rate

* Choose learning rates schedule
 Make some random data

e Train for 100 batches

model.apply(weights_init)

# choose least squares loss function

criterion = nn.MSELoss()

# construct SGD optimizer and initialize learning rate and momentum
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum=0.9)
# object that decreases learning rate by half every 10 epochs

scheduler = StepLR(optimizer, step_size=10, gamma=0.5)

# create 100 dummy data points and store in data loader class

X = torch.randn(100, D_i)

y = torch.randn(100, D_o)

data_loader = DataLoader(TensorDataset(x,y), batch_size=10, shuffle=True)

# loop over the dataset 100 times
for epoch in range(100):
epoch_loss = 0.0
# loop over batches
for i, data in enumerate(data_loader):
# retrieve inputs and labels for this batch
Xx_batch, y_batch = data
# zero the parameter gradients
optimizer.zero_grad()
# forward pass
pred = model (x_batch)
loss criterion(pred, y_batch)
# backward pass
loss.backward()
# SGD update
optimizer.step()
# update statistics
epoch_loss += loss.item()
# print error
print (f 'Epoch {epoch:5d}, loss {epoch_loss:.3f}"')
# tell scheduler to consider updating learning rate
scheduler.step()



