Final Review

CS 4277: Deep Learning

8 Measuring Performance

1. * Describe the three principle sources of errors that lead to poor generalization in machine learning and
how they can be reduced. (8.2-8.3)

Solution:

1. Noise may arise because there is a genuine stochastic element to the data generation process,
because some of the data are mislabeled, or because there are further explanatory variables
that were not observed. Noise is usually a fundamental limitation that cannot be mitigated.

2. Bias occurs when the model is not flexible enough to fit the true function perfectly, e.g., a
single line cannot represent a sinusoidal function well. We can reduce the bias by making the
model more flexible, i.e., increasing its capacity.

3. Variance occurs in the particular sample of the data we have in our training set. Another
training set drawn from the same underlying function may be different. Variance may also
arise from stochastic training algorithms that do not converge to the same model each time
they are trained on the same data. We can reduce variance by increasing the quantity of
training data.

2. * Describe the bias-variance tradeoff. (8.3.3)

Solution: For a fixed-size training data set, as the model capacity increases the the variance in-
creases and the test error does not decrease, or even increases. With more flexibility the model is
able to fit the noise in the training data, leading to overfitting — lower training error with plateauing
or increasing test error.




3. * Describe the double-descent phenomenon in deep neural networks. (8.4)

Solution:

Squared Error

s

MNIST-1D no label noise b) MNIST-1D 15% label noise
{ 5.
i i
rain| ran|
Hiddeﬁ layer size Hiddeﬁ layer size
d) CIFAR-100

MNIST

rain

Error (%)

Train 20% noise

i Train no noise

T 0
Number of parameters x10°

ResNet-18 width par’a’meter

Panels b, ¢ and d show double descent.

For a fixed training/test data set and training procedure, as the model capacity increases the test
error reaches nearly zero. For some data, the test error also continues to decrease, but more slowly
as the model capacity exceeds the training data. But for may data sets, such as those with label
noise, the test error increases as model capacity approaches the point where the capacity equals the
number of training examples — as the bias-variance tradeoff predicts. But with increasing model
capacity the test error begins to decrease again to below the original pre-overfitting test error.

4. What is the typical approach to choosing hyperparameters? (8.5)

Solution: Empirically, by training with different hyperparameters and testing on a validation set,
which is separate from the training and test data.
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9 Regularization

5. * What is the goal of regularization?

Solution: To reduce the generalization gap between training and test performance.

6. * What is the standard approach to explicit regularization? (9.1)

Solution: Introducing terms to the loss function that favor certain parameter choices by penalizing
other parameter choices.

7. Describe L2 regularization. (9.1.2)

Solution: The most common regularization term, the L2 morm, penalizes the sum of the squares
of the parameter values:

I

$ = argmin (Z Ci(xi,yi) + A Z qﬁ?) (Equation 9.5)
4 i—1 j

This is also referred to as Tikhonov regularization or ridge regression, or (when applied to matrices)
Frobenius norm regularization.

8. How is implicit regularization accomplished by SGD? (9.2.2)

Solution: SGD adds noise to the gradient descent because the gradient will be different for different
batches. This has the effect of smoothing out the learned function.

9. List 3 heuristic methods of implicit regularization. (9.3)

Solution:

1. Early stopping: stopping training before reaching convergence.
2. Ensembling: train several models and average their predictions.

3. Dropout: drop a random subset of units to 0 at each iteration of SGD, which encourages
smaller weights and reduces “kinks” in the learned function.

4. Adding noise to the input data, which smooths out the learned function. Extreme variant:
adversarial training, which uses an optimization algorithm to find small perturbations in the
input data that cause large changes to the output.

Page 3



10. * Consider a model where the prior distribution over the parameters is a normal distribution with mean
zero and variance ai so that

J
Pr(¢) = H Normy, (0,03)

i=1

where j indexes the model parameters. When we apply a prior, we maximize HiI:l Pr(y;|xz;, &) Pr (o).
The associated loss function of this model is equivalent to which regularization technique?

Solution: L2 norm: ¢ = argmin,, (Zle (i yi) + A2, ¢3)
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10 Convolutional Networks

11. What is invariance? (10.1)

Solution: f(T(x)) = f(x), i.e., the output of the function f(z) is the same regardless of the
application of tranformaction ¢(x) to the input. For example, a CNN should classifiy a picture as
containing a dog even if we translate the position of the dog within the image.

12. What is equivariance? (10.1)

Solution: f(T(x;)) = T(f(x;)), i.e., the output of the tranformation of the function output is the
same as applying the function to transformed input. For example, per-pixel image segmentation
should be equivariant to translation.

13. * What properties of images make convolutional neural networks well-suited to them?

Solution:

e Images are high-dimensional, leading to a need to reduce the number of parameters compared
to a fully-connected network.

e Nearby pixels are statistically related, so weights can be shared.

e The interpretation of an image is stable under geometric transformation, e.g., a picture of a
dog is a picture of a dog no matter where in the image the dog is located.

14. * What is the motivation for convolutional layers in a neural network?

Solution: They use fewer parameters than fully connected layers, exploit the spatial relationships
between nearby pixels, and don’t have to re-learn the interpretation of the pixels at every position.
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15. * Write out the equation for the 1D dilated convolution with a kernel size of three and a dilation rate of
two, as pictured in Figure 10.3d (reproduced below).
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Solution:
Zi = W1Ti—2 + WaT; + W3Ti42

16. * T/F The convolution operation is equivariant to translation.

Solution: True

17. T/F The convolution operation is invariant to translation.

Solution: False

18. * Consider a 1D convolutional layer computed using a kernel size of three and has four channels. How
many weights and biases are needed for this convolutional layer?

Solution: 3 x 4 x 3 = 36 weights and 4 biases

19. Describe three methods of downsampling. (10.4.1)

Solution:

1. Applying a stride of two effectively downsamples by a factor of 2.
2. Max pooling retains the maximum of d x d input values.
3. Mean or average pooling averages the inputs.

20. Describe four methods of upsampling. (10.4.2)

Solution:

1. Duplicate channels at each spatial position. For example, duplicate each channel 4 times to
double the size.

2. Max unpooling.

Bilinear interpolation.

4. Transposed convolution using the transpose of the weight matrix for the downsampling method.

bl
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11 Residual Networks

21. * Describe the shattered gradients problem in deep networks. (11.1.1)

Solution: Adding more layers beyond a point (; 20ish layers) decreases performance because small
changes in the input lead to completely different gradients. In shallow network nearby gradients are
correlated, but the correlatoin of nearby gradients quickly drops to zero for deep networks.

22. * What is a residual, a.k.a., skip, connection? (11.2)

Solution: A branch in the computational path whereby the input to each layer is added back to
the output.

23. What is the typical order of operations in a residual block? (11.2 - 11.2.1)

Solution: Typically the activation function is applied before the linear transformation, and the
residual connection is from before the activation to after the linear transformation. In practice
residual blocks contain several such activation-transofrmation layers with a single residual connection
from start to end.

24. * Describe the problem of exploding gradients in residual networks. (11.3)

Solution: Recombining the input with the output in a residual connection doubles the variance,
growing exponentially with the number of residual blocks. With enough residual blocks, floating
point precision can be exceeeded in the forward and backward passes of the backpropagation algo-
rithm.

25. * What is batch normalization and why is it used? (11.4)

Solution: Batch normalization or BatchNorm shifts and rescales each activation h so that its mean
and variance across the batch B become values that are learned during training. Batch normalization
is used to stabilize the forward and backward passes of backpropagation in residual networks — it
counteracts the exploding gradients problem.

26. What is the chief drawback of batch normalization and what are its advantages? (11.4.1)

Solution: Disadvantages: Batch normalizatoin adds two extra parameters, v and o, at each hidden
unit and redundancy in the weights and biases, which decreases efficiency. Advantages:

e Stabilizes forward propagation.
e Enables higher learning rates due to smoother error surfaces.
e Implicitly regularizes by injecting noise into the training process.
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27.

28.

29.

30.

31.

32.

12 Transformers

* What are the two primary design goals acheived by dot-product self-attention in a language model?
(12.2)

Solution:

1. Uses parameter sharing to cope with long input passages of differeing lengths.

2. Contains connections between word representations that depend on the words themselves.

* Why is positional encoding used in language models? (12.3.1)

Solution: Self-attention by itself is equivariant to permuting word order, but word order is impor-
tant in language.

What are the typical internal sub-layers of a transformer layer? (12.4)

Transformer layer

Residual connection Residual connection

Mgt

Input i Multi-head LayerNorm Parallel neural LayerNorm E Output
i self-attention networks (x V) i

Solution:

* What is Tokenization? (12.5.1)

Solution: Turning a sequence of input letters into a sequence of tokens from a vocabulary of possible
tokens. The vocabulary and the tokenization is learned, and tokens are typically sub-word, such as
byte pairs.

* Embeddings (12.5.2)

Solution: Every token in the vocabulary is mapped to a D-dimensional vector, typically 1024. The
mapping is learned.

* Encoders and decoders. (12.6)

Solution: An encoder transforms the text embeddings into a representation that can support a
variety of tasks. A decoder predicts the next token in a sequence. Encoder-decoders are used in
sequence-to-sequence tasks, where one text string is converted into another (e.g., machine transla-
tion).
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33. * Pre-training (12.6.1)

Solution: In the pre-training stage, the network is trained using self-supervision. This allows the
use of enormous amounts of data without the need for manual labels. Typically the self-supervision
task consists of predicting missing words from sentences from a large internet corpus.

34. * Fine-tuning (12.6.2)

35.

Solution: In the fine-tuning stage, the model parameters are adjusted to specialize the network to
a particular task. An extra layer is appended onto the transformer network to convert the output
vectors to the desired output format. Tasks include text classification, word classification, text span
prediction. Fine-tuning is also used to refer to transfer learning, in which we train a model on a
large general-purpose corpus, and then fine-tune it by continuing training with a specialized corpus
or a specialized task setting like chat.

*

Auto-regressive language modeling (12.7.1)

Solution: The decoder uses its own output as it generates longer output sequences. Formally, the
model indirectly computes the joint probability of all tokens by predicting the conditional distribu-
tions Pr(t,|ti, ..., tn—1).

36. Few-shot learning (12.7.4)

Solution: Few-shot learning is a type of supervised learning for small training sets with a very
small example-to-class ratio. Rather than a traditional training set, few-shot learning algorithms
use a support set, with very few examples per class. Some people argue that LLMs are capable of
few-shot learning by providing a support set in a prompt. For example:

Poor English input: I eated the purple berries.

Good English output: I ate the purple berries.

Poor English input: Thank you for picking me as your designer. I'd appreciate it.
Good English output: Thank you for choosing me as your designer. I appreciate it.
Poor English input: The mentioned changes have done. or I did the alteration that you
requested. or I changed things you wanted and did the modifications.

Good English output: The requested changes have been made. or I made the alteration
that

you requested. or I changed things you wanted and made the modifications.

Poor English input: I'd be more than happy to work with you in another project.
Good English output: I'd be more than happy to work with you on another project.

All text up to the italicized text in the last line is provided in the prompt, and the model generates
the italicized text in repsponse after having “learned” from the few examples in the prompt.
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37.

38.

39.

40.

41.

42.

13 Graph Neural Networks

Graph-level tasks (13.3.1)

Solution: Predict the temperature at which a molecule becomes liquid (a regression task) or
whether a molecule is poisonous to human beings or not (a classification task).

Node-level tasks (13.3.1)

Solution: The network assigns a label (classification) or one or more values (regression) to each
node of the graph, using both the graph structure and node embeddings.

Edge-prediction tasks (13.3.1)

Solution: The network predicts whether or not there should be an edge between nodes n and m.
For example, in a social network, the network might predict the probability that two people should
be friends.

* What is the defining feature of graph convolutional neural networks? (13.4)

Solution: Graph convolutional neural networks update each node by aggregating information from
nearby nodes.

* What is meant by relational inductive bias in graph convolutional networks? (13.4)

Solution: They prioritize information from neighbors.

How is parameter sharing accomplished in graph convolutional networks? (13.4.2)

Solution: By aggregating information from neighboring nodes by summing their node embeddings.
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19 Deep Reinforcement Learning

43. What is meant by temporal credit assignment?

Solution: In a sequence of actions reward is often received only at the end. Temporal credit
assignment is the problem of assigning value (credit) to intermediate steps that led to the final
reward.

44. What is the Markov property with respect to states si, Sa,..., s where t € T are time steps?

Solution: Transintion probabilities between states are modeled by Pr(s:4+1|s). In other words, the
next state depends only on the current state. More generally, the next state is dependent on a
bounded history of states.

45. * What is the primary advantage of deep reinforcement learning over tabular reinforcement learning?

Solution: Compact representation of the action value function. Tabular RL algorithms are only
practical if the state-action space is relatively small.
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