
SQL Queries

1 / 28

The SELECT-FROM-WHERE Structure

SELECT <attributes >
FROM <tables >
WHERE <conditions >

From relational algebra:
I SELECT <attributes> corresponds to projection
I FROM <tables> specifies the table in parentheses in a relational

algebra expression and joins
I WHERE <conditions> corresponds to selection

2 / 28

Projection

πfirst_name,last_name(author)

mysql > select first_name , last_name from author;

produces:

first_name last_name
John McCarthy
Dennis Ritchie
Ken Thompson
Claude Shannon
Alan Turing
Alonzo Church
Perry White
Moshe Vardi
Roy Batty

9 rows in set (0.00 sec)

3 / 28

Asterisk

Project all columns.
mysql > select * from author;

produces:

author_id first_name last_name
1 John McCarthy
2 Dennis Ritchie
3 Ken Thompson
4 Claude Shannon
5 Alan Turing
6 Alonzo Church
7 Perry White
8 Moshe Vardi
9 Roy Batty

Notice that with no condition on select, all rows returned.

4 / 28

Select

σyear=2012(book)

mysql > select * from book where year = 2012;

produces:

book_id book_title month year editor
7 AAAI July 2012 9
8 NIPS July 2012 9

5 / 28

String Matching with LIKE

Our where condition can match a pattern with like. Use a % for wildcard,
i.e., matching any character sequence.
Which publications have "Turing" in their titles?
select * from pub where title like ’Turing%’;

produces:

pub_id title book_id
4 Turing Machines 4
5 Turing Test 5

Note that strings are not case-sensitive.

6 / 28

Joins

The FROM clause takes one or more source tables from the database and
combines them into one (large) table using the JOIN operator. Three
kinds of joins:

I CROSS JOIN
I INNER JOIN
I OUTER JOIN

Since DB designs are typically factored into many tables, the join is the
most important part of a query.

7 / 28

CROSS JOIN

A CROSS JOIN matches every row of the first table with every row of
the second table. Think of a cross join as a cartesian product.
The general syntax for a cross join is:
SELECT <select_header > FROM <table1 > CROSS JOIN <table2 >

or
SELECT <select_header > FROM <table1 >, <table2 >

8 / 28

CROSS JOIN EXAMPLE
mysql > select * from pub cross join book;

produces 48 rows (6 pubs × 8 books):
Pub_id title book_id book_id book_title month year editor
1 LISP 1 1 CACM April 1960 8
2 Unix 2 1 CACM April 1960 8
3 Info Theory 3 1 CACM April 1960 8
4 Turing Machines 4 1 CACM April 1960 8
5 Turing Test 5 1 CACM April 1960 8
6 Lambda Calculus 6 1 CACM April 1960 8
1 LISP 1 2 CACM July 1974 8
2 Unix 2 2 CACM July 1974 8
3 Info Theory 3 2 CACM July 1974 8
4 Turing Machines 4 2 CACM July 1974 8
5 Turing Test 5 2 CACM July 1974 8
6 Lambda Calculus 6 2 CACM July 1974 8
1 LISP 1 3 BST July 1948 2
2 Unix 2 3 BST July 1948 2
3 Info Theory 3 3 BST July 1948 2
4 Turing Machines 4 3 BST July 1948 2
5 Turing Test 5 3 BST July 1948 2
6 Lambda Calculus 6 3 BST July 1948 2
1 LISP 1 4 LMS November 1936 7
2 Unix 2 4 LMS November 1936 7
3 Info Theory 3 4 LMS November 1936 7
4 Turing Machines 4 4 LMS November 1936 7
5 Turing Test 5 4 LMS November 1936 7
6 Lambda Calculus 6 4 LMS November 1936 7
1 LISP 1 5 Mind October 1950 NULL
2 Unix 2 5 Mind October 1950 NULL
3 Info Theory 3 5 Mind October 1950 NULL
4 Turing Machines 4 5 Mind October 1950 NULL
5 Turing Test 5 5 Mind October 1950 NULL
6 Lambda Calculus 6 5 Mind October 1950 NULL
1 LISP 1 6 AMS Month 1941 NULL
2 Unix 2 6 AMS Month 1941 NULL
3 Info Theory 3 6 AMS Month 1941 NULL
4 Turing Machines 4 6 AMS Month 1941 NULL
5 Turing Test 5 6 AMS Month 1941 NULL
6 Lambda Calculus 6 6 AMS Month 1941 NULL
1 LISP 1 7 AAAI July 2012 9
2 Unix 2 7 AAAI July 2012 9
3 Info Theory 3 7 AAAI July 2012 9
4 Turing Machines 4 7 AAAI July 2012 9
5 Turing Test 5 7 AAAI July 2012 9
6 Lambda Calculus 6 7 AAAI July 2012 9
1 LISP 1 8 NIPS July 2012 9
2 Unix 2 8 NIPS July 2012 9
3 Info Theory 3 8 NIPS July 2012 9
4 Turing Machines 4 8 NIPS July 2012 9
5 Turing Test 5 8 NIPS July 2012 9
6 Lambda Calculus 6 8 NIPS July 2012 9

9 / 28

LIMITing Results

If we don’t want many results to scroll past the bottom of the screen we
can limit the number of results using a LIMIT clause.
mysql > select * from pub , book limit 3;

pub_id title book_id book_id book_title month year editor
1 LISP 1 1 CACM April 1960 8
2 Unix 2 1 CACM April 1960 8
3 Info Theory 3 1 CACM April 1960 8

The general form of the LIMIT clause is LIMIT start, count, where start
is the first row returned and count is the number of rows returned. If a
single value is given, start assumes the value 0.

10 / 28

Inner Joins

A simple inner join uses an ON condition.
mysql > select * from pub join book on pub.book_id = book.book_id;

pub_id title book_id book_id book_title month year editor
1 LISP 1 1 CACM April 1960 8
2 Unix 2 2 CACM July 1974 8
3 Info Theory 3 3 BST July 1948 2
4 Turing Machines 4 4 LMS November 1936 7
5 Turing Test 5 5 Mind October 1950 NULL
6 Lambda Calculus 6 6 AMS Month 1941 NULL

Notice that book_id appears twice, becuase we get one from each source
table. We can fix that . . .

11 / 28

Natural Joins

The USING clause, also called a natural join, equijoins on a like-named
column from each table and includes the join column only once.
mysql > select * from pub join book using (book_id);

book_id pub_id title book_title month year editor
1 1 LISP CACM April 1960 8
2 2 Unix CACM July 1974 8
3 3 Info Theory BST July 1948 2
4 4 Turing Machines LMS November 1936 7
5 5 Turing Test Mind October 1950 NULL
6 6 Lambda Calculus AMS Month 1941 NULL

12 / 28

Many to Many Relationships

A single author can write many publications, and a single publication can
have many authors. This is a many-to-many relationship, which is
modeled in relational databases with a relationship (or link or bridge)
table.
CREATE TABLE IF NOT EXISTS author_pub (

author_id INTEGER NOT NULL REFERENCES author(author_id),
pub_id INTEGER NOT NULL REFERENCES publication(pub_id),
author_position INTEGER NOT NULL , -- first author , second , etc?
PRIMARY KEY (author_id , pub_id)

);

author_pub tables links the author and pub tables

I author_id and pub_id are foreign keys to author and pub tables
I (author_id, pub_id) is composite key for the table

13 / 28

Joining Multiple Tables

We can join all three tables by chaining join clauses:
mysql > select *

-> from author join author_pub using (author_id)
-> join pub using (pub_id);

pub_id a_id first_name last_name a_pos title book_id
1 1 John McCarthy 1 LISP 1
2 2 Dennis Ritchie 1 Unix 2
2 3 Ken Thompson 2 Unix 2
3 4 Claude Shannon 1 Info Theory 3
4 5 Alan Turing 1 Turing Machines 4
5 5 Alan Turing 1 Turing Test 5
6 6 Alonzo Church 1 Lambda Calculus 6

14 / 28

Queries in Depth

SELECT [DISTINCT] <select_header >
FROM <source_tables >
WHERE <filter_expression >
GROUP BY <grouping_expressions >
HAVING <filter_expression >
ORDER BY <ordering_expressions >
LIMIT <count > OFFSET <count >

I The table is the fundamental data abstraction in a relational

database.
I The select command returns its result as a table
I Think of a select statement as creating a pipeline, each stage of

which produces an intermediate working table

15 / 28

The SELECT Pipeline
The evaluation order of select clauses is approximately:
1. FROM <source_tables> - Designates source tables and

combining into one working table.
1. WHERE <filter_expression> - Filters specific rows of working

table
2. GROUP BY <grouping_expressions> - Groups sets of rows in the

working table based on column values
3. SELECT <select_heading> - Defines the result set columns and (if

applicable) grouping aggregates.
4. HAVING <filter_expression> - Filters specific rows of the

grouped table. Requires a GROUP BY
5. DISTINCT - Eliminates duplicate rows.
6. ~ORDER BY <ordering_expressions> - Sorts the rows of the result

set
7. OFFSET <count> - Skips over rows at the beginning of the result

set. Requires a LIMIT.
8. LIMIT <count> - Limits the result set output to a specific number

of rows.
Evaluation order determines what can be cross referenced in clauses.

16 / 28

Aggregate Functions

Operate on groups of rows. Some common ones: COUNT, SUM, AVG
mysql > select count (*) from book;
+----------+
| count (*) |
+----------+
| 8 |
+----------+

There are 8 rows in the book table.
mysql > select count(editor) from book;
+---------------+
| count(editor) |
+---------------+
| 6 |
+---------------+

Notice that COUNT doesn’t count NULL values.

17 / 28

GROUP BY

The GROUP BY clause groups rows in the working table by the values in
the specified column(s) and collapses each group into a single row.

I We can apply an aggregate function to the resulting groups
I If we don’t apply an aggregate function, only the last row of a group

is returned.
I Since rows within groups are in no particular order, failing to apply

an aggregate function would essentially give us a random result.

18 / 28

Aggregate Functions on Groups

Aggregate functions apply some function the to the rows grouped
together by a GROUP BY clause.
How many papers did each author write?
mysql > select author_id , last_name , count(author_id)

-> from author join author_pub using (author_id)
-> join pub using (pub_id)
-> group by author_id;

author_id last_name count(author_id)
1 McCarthy 1
2 Ritchie 1
3 Thompson 1
4 Shannon 1
5 Turing 2
6 Church 1

Aggregate function is applied to column in GROUP BY.

19 / 28

Simple Summation

Here are the data in the dorm table:
mysql > select * from dorm;

dorm_id name spaces
1 Armstrong 124
2 Brown 158
3 Caldwell 158

What is the total capacity (number of spaces) for all dorms?

20 / 28

SUM

To find the total capacity for all dorms, sum the spaces column:
mysql > select sum(spaces) from dorm;

sum(spaces)
440

Or use a column alias in the select list to make output clearer:
mysql > select sum(spaces) as total_capacity from dorm;

total_capacity
440

21 / 28

Grouping and Counting
What is the occupancy of each dorm?
First, get a feel for the data:
mysql > select * from dorm join student using (dorm_id) order by

dorm.name;

dorm_id name spaces student_id name gpa
1 Armstrong 124 1 Alice 3.60
1 Armstrong 124 2 Bob 2.70
1 Armstrong 124 3 Cheng 3.90
2 Brown 158 4 Dhruv 3.40
2 Brown 158 5 Ellie 4.00
2 Brown 158 6 Fong 2.30
3 Caldwell 158 7 Gerd 4.00
3 Caldwell 158 8 Hal 2.20
3 Caldwell 158 9 Isaac 2.00
3 Caldwell 158 10 Jacque 4.00

We can see that there are three groups of dorms in the result, which we
could group by dorm_id or dorm.name.

22 / 28

Dorm Occupancy

So we group by dorm.name and count the rows in each group.
mysql > select dorm.name as dorm_name , count (*) as occupancy

-> from dorm join student using (dorm_id)
-> group by dorm.name;

dorm_name occupancy
Armstrong 3
Brown 3
Caldwell 4

23 / 28

Sorting, Aliasing, and Limiting

Who wrote the most publications?
mysql > select author_id , last_name , count(author_id) as pub_count

-> from author join author_pub using (author_id) join pub using
(pub_id)

-> group by author_id
-> order by pub_count desc;

author_id last_name pub_count
5 Turing 2
1 McCarthy 1
2 Ritchie 1
6 Church 1
3 Thompson 1
4 Shannon 1

Notice that we also used an alias so we could reference the count in the
ORDER BY clause

24 / 28

Limiting Results

If we want only the answer from the last query we can use LIMIT:
Who wrote the most publications?
mysql > select author_id , last_name , count(author_id) as pub_count

-> from author join author_pub using (author_id) join pub using
(pub_id)

-> group by author_id
-> order by pub_count desc
-> limit 1;

author_id last_name pub_count
5 Turing 2

25 / 28

HAVING

In the previous query we got the top author by pub count. If we want all
authors having a particular pub count, we can use a HAVING clause.
mysql > select author_id , last_name , count(author_id) as pub_count

-> from author join author_pub using (author_id)
-> join pub using (pub_id)
-> group by author_id
-> having pub_count = 1;

Author_id last_name pub_count
1 McCarthy 1
2 Ritchie 1
3 Thompson 1
4 Shannon 1
6 Church 1

We can use comparisons like <, >. Notice that Turing is not in the
result.

26 / 28

HAVING vs. WHERE Conditions

Functionally HAVING and WHERE do the same thing: they filter-in
tuples. The difference is where they are evaluated in the SELECT
pipeline.

I WHERE is evaluated only after the FROM clause that selects the
source tables, so WHERE clauses can only reference expressions that
do not contain aggregate functions

I HAVING is evaluated after GROUP BY, and SELECT, so HAVING
clauses can reference any result column

Be aware that rows filtered out by a WHERE clause will not be included
in a GROUP BY clause.

27 / 28

WHERE vs. HAVING Example
WHERE clause can’t refer to column aliases and aggregates in the SELECT
list or apply functions to groups greated by GROUP BY clauses.
mysql > select author_id , last_name , count(author_id) as pub_count

-> from author natural join author_pub natural join pub
-> where pub_count = 1
-> group by author_id;

ERROR 1054 (42 S22): Unknown column ’pub_count ’ in ’where clause ’

HAVING can refer to select columns.
mysql > select author_id , last_name , count(author_id) as pub_count

-> from author natural join author_pub natural join pub
-> group by author_id
-> having pub_count = 1;

author_id last_name pub_count
1 McCarthy 1
2 Ritchie 1
3 Thompson 1
4 Shannon 1
6 Church 1

28 / 28

	SQL Queries

