
Advanced Relational Design

1 / 23



Closure of a Set of FDs

The closure F+ of F is the set of all FDs logically implied by F . We can
use a set of inference rules known as Armstrong’s Axioms to derive new
FDs.

I Reflexivity. If Y ⊆ X , then X → Y

I Augmentation. If X → Y holds, then XZ → YZ

I Transitivity. If X → Y holds and Y → Z holds, then X → Z holds

Note that XY is shorhand for X ∪ Y .
Armstrong’s axioms are sound because they do not produce new FDs
that don’t hold, and complete because applying them repeatedly finds
F+, i.e., all FDs that are logically implied by F .
Note that F+ includes all FDs, including trivial FDs.

2 / 23



Algorithm for Finding F+

Apply Armstrong’s Axioms repeatedly.

I Let F+ = F

I repeat:
I for each FD f in F+:

I add results of applying reflexivity and augmentation rules on f to F+

I for each pair of FDs X → Y and Y → Z in F+:
I add X → Z to F+

I until F+ does not change any further

This algorithm is instructive, but tedious and expensive and mainly for
conceptual understanding. Important concept: two sets of FDs are
equivalent if they imply the same closure set of FDs.

3 / 23



Attribute Closure

The set of attributes functionally determined by X under F is the
attribute closure of X under F , denoted X+.

Algorithm 15.1 Determining X+, the closure of X under F
Input: A set F of FDs on relation schema R, and a set of attributes
X ⊆ R

I X+ := X

I repeat:
I oldX+ := X+

I for each functional dependency Y → Z :
I if Y ⊆ X+ then X+ := X+ ∪ Z

I until X+ = oldX+

4 / 23



Uses of Attribute Closure

I Test whether X is a superkey of R.
I If X+ contains all attributes in R, then X is a superkey of R.

I Checking whether an FD X → Y holds on R under F .
I Compute X+. If Y ⊆ X+ then X → Y holds.
I This is equivalent to saying that X → Y is in F+

I Note: you never actually need to compute F+, you just need to be
able to determine if some FD is in F+.

I An alternate way to compute F+.
I For each Z ⊆ R, compute Z+

I For each S ⊆ Z+ add FD Z → S to F+

5 / 23



Superkey Test

Given R(A,B,C ,G ,H, I ) and F = {

A → B,
A → C,
CG → H,
CG → I,
B → H }

compute {AG}+.
The first time we execute the outer loop:

I A→ B adds B to {AG}+, making {AG}+ = {ABG}.
I A→ C adds C , making {AG}+ = {ABCG}.
I CG → H adds H, making {AG}+ = {ABCGH}.
I CG → I adds I , making {AG}+ = {ABCGHI}.

Since {AG}+ now includes all attributes in R, the second iteration of the
outer loop adds no new attributes, so the algorithm terminates. Since
{AG}+ includes all the atributes of R, {AG} is a superkey of R.

6 / 23



Finding A Candidate Key

Algorithm 15.2(a): Finding a key K for R given a set F of
functional dependencies on R
Input: A relation R and FDs F on R

1. set K := R

2. for each attribute a in K :
I compute (K − {a})+ with respect to F
I if R ⊆ (K − {a})+, then set K := K − {a}

This algorithm finds a single candidate key depending on the order in
which attributes are removed.

7 / 23



BCNF Example 2

Given TEACH(Student, Course, Instructor) and

I FD1: {Student, Course} → Instructor
I FD2: Instructor → Course.

FD2 violates BCNF. There are three possible BCNF decompositions:

1. R1( Student , Instructor ) and R2( Student , Course )
2. R1( Instructor , Course) and R2( Student , Course )
3. R1( Instructor , Course) and R2( Instructor , Student )

All three decompositions lose FD1. Which decompositions are good?

8 / 23



Desirable Properties of Decompositions

A decomposition of R into R1 and R2 must preserve attributes, that is,
R = R1 ∪ R2. We’d also like:

1. Dependency preservation (desired), and
2. Non-additive (lossless) joins (required).

Dependencies can be preserved in all 3NF decompositions, but not in all
BCNF decompositions. In all decompositions we must have non-additive
join property.

9 / 23



Non-Additive Join Test

A Decomposition D = {R1,R2} of R has the lossless (nonadditive) join
property with repect to FDs F on R if and only if either

I The FD ((R1 ∩ R2)→ (R1 − R2)) is in F+, or
I The FD ((R1 ∩ R2)→ (R2 − R1)) is in F+

Important note: the non-additive join property assumes that no null
values are allowed for join attributes.
The non-additive join test finds the right attribute to connect the two
schemas, the attribute on which you would join the decomposed schemas
to recover the original schema.
Remember how to test if X → Y is in F+?

I Y is in X+ under F . – use the attribute closure algorithm
(Algorithm 15.1).

10 / 23



Test of Decomposition # 1

For

1. R1( Student , Instructor ) and R2( Student , Course )
2. (R1 ∩ R2) = Student
3. (R1 − R2) = Instructor
4. (R2 − R1) = Course

So either

I Student → Instructor, or
I Student → Course

must be in F+. But they aren’t.

11 / 23



Visualizing Nonadditive Join

Say we have a relation state r(R) =

student course instructor
Narayan Database Mark
Narayan Operating Systems Ammar
Smith Database Navathe
Smith Operating Systems Ammar
Smith Theory Schulman
Wallace Database Mark
Wallace Operating Systems Ahamad
Wong Database Omiecinski
Zelaya Database Navathe

12 / 23



Bad Decomposition

r(R1) =

student instructor
Narayan Ammar
Narayan Mark
Smith Ammar
Smith Navathe
Smith Schulman
Wallace Ahamad
Wallace Mark
Wong Omiecinski
Zelaya Navathe

r(R2) =

student course
Narayan Database
Narayan Operating Systems
Smith Database
Smith Operating Systems
Smith Theory
Wallace Database
Wallace Operating Systems
Wong Database
Zelaya Database

We would join on student and
end up with . . .

13 / 23



Join with Spurious Tuples

student course instructor
Narayan Database Ammar
Narayan Database Mark
Narayan Operating Systems Ammar
Narayan Operating Systems Mark
Smith Database Ammar
Smith Database Navathe

. . . and 13 more tuples, which is way more tuples than the original
relation due to spurious tuples, so the join is not non-additive.
Lost the association between Instructor and Course. E.g., Mark does not
teach Operating Systems.

14 / 23



Test of Decomposition # 2

For

1. R1( Instructor , Course) and R2( Student , Course )
2. (R1 ∩ R2) = Course
3. (R1 − R2) = Instructor
4. (R2 − R1) = Student

So either

I Course → Instructor, or
I Course → Student

must be in F+. But they aren’t.

15 / 23



Test of Decomposition # 3

For

1. R1( Instructor , Course) and R2( Instructor , Student )
2. (R1 ∩ R2) = Instructor
3. (R1 − R2) = Course
4. (R2 − R1) = Student

So either

I Instructor → Course, or
I Instructor → Student

must be in F+. Instructor → Course is in F+, so this decomposition is
the right one.

16 / 23



Schema Decomposition

A decomposition of a relation R into R1 and R2 can be defined as:

I R1 = πA(R)

I R2 = πB(R)

Where R = A ∪ B
To find the functional dependencies that hold on R1 and R2 we project
the functional dependencies that hold on R into sets of FDs for R1 and
R2.

17 / 23



Minimal Cover Sets of FDs

A set of FDs F is a minimal cover set if removing any FD changes F+.
To transform F into a minimal cover set:
I while there is an FD F in F that is implied by other FDs in F :

I remove F from F

I repeat
I for each FD Y → B in F with two or more attributes in Y :

I let Z be Y minus one attribute in Y
I if Z → B follows from the FDs in F (including Y → B), then replace

Y → B with Z → B

I until no more changes to F can be made

18 / 23



Projection of FDs

Input: A relation R, a relation R1 computed by the projection πL(R), and
a set of FDs S that hold on R.

1. set T = {} (the empty set)
2. for each subset of attributes X in R1:

I compute X+ with respect to S . Note that there may be attributes in
X+ that are in R but not in R1.

I Add to T nontrivial FDs X → A for which A is in X+ and R1.

3. Optional: transform T into a minimal cover set of FDs.

Output: T , a (minimal) set of functional dependencies that hold on R1

19 / 23



Bottom-Up Design Approaches

Bottom-up approaches start with one universl relation which contains all
attributes in the database. 3NF or BCNF relation schemas are
synthesized from this universal relation schema.

I Algorithm 15.4 sythesizes univeral relation R into 3NF schemas that
have the nonadditive join property and preserve dependencies.

I Algorithm 15.5 converts univeral relation R into BCNF schemas that
have the nonadditive join property (but not necessarily preserving
dependencies) by iterative decomposition.

In this class you only need to know Algorithm 15.5, BCNF decomposition.

20 / 23



Informal 3NF Synthesis

Informally, Algorithm 15.4 for 3NF synthesis does this:

1. Find a minimal cover set of FDs for R.
2. For each FD in the minimal cover create a relation schema with

each attribute in the FD. The left-hand side of the FD is the key.
3. If none of the schemas above contains a key of R, create one more

relation schema with attributes that form a key of R (the previously
created schemas will contain foreign keys to this relation schema).

4. Elminate redundant schemas.

Easy to understand conceptually, but many details which we don’t require
you to know.

21 / 23



Informal BCNF Decomposition

Before diving into the much simpler BCNF decomposition algorithm,
here’s an informal decription of the process it follows.
Let

I R be a relation schema not in BCNF,
I X ⊆ R, and
I X → A be the FD that violates BCNF.

Decompose R into

I R − A, and
I XA

If either of these relations is not in BCNF, repeat the process.

22 / 23



BCNF Decomposition Algorithm

Algorithm 15.5: Relational Decomposition into BCNF with
Nonadditive Join Property
Input: A universal relation R and a set of FDs F on R

1. set D := {R}
2. while there is a relation schema Q in D that is not in BCNF:

I choose a relation schema Q in D that is not in BCNF
I find a functional dependency X → Y in Q that violates BCNF
I replace Q in D by two schemas (Q − X+ + X ) and X+

I project the functional dependencies from Q into the new schemas.

Output: D, a set of relation schemas in BCNF with the non-additive join
property such that D =

⋃n
1 Di

Note that each schema has its own set of functional dependencies, so
each decomposition results in the loss of one schema from D along with
its functional dependencies, and the addition of two new schemas each
with their own sets of functional dependencies.

23 / 23


	Advanced Relational Design

