Relational Algebra Exercises

Pubs Database Schema

 $author(\underline{author_id}, first_name, last_name)$

 $author_pub(\underline{author_id}, pub_id, author_position)$

book(book_id, book_title, month, year, editor)

$pub(pub_id, title, book_id)$

- *author_id* in *author_pub* is a foreign key referencing *author*
- *pub_id* in *author_pub* is a foreign key referencing *pub*
- *book_id* in *pub* is a foreign key referencing *book*
- *editor* in *book* is a foreign key referencing *author*(*author_id*)
- Primary keys are underlined

Pubs Database State

r(author)

()		
author_id	first_name	last_name
1	John	McCarthy
2	Dennis	Ritchie
3	Ken	Thompson
4	Claude	Shannon
5	Alan	Turing
6	Alonzo	Church
7	Perry	White
8	Moshe	Vardi
9	Roy	Batty

r(book)

1(00011)				
book_id	book_title	month	year	editor
1	CACM	April	1960	8
2	CACM	July	1974	8
3	BST	July	1948	2
4	LMS	November	1936	7
5	Mind	October	1950	NULL
6	AMS	Month	1941	NULL
7	AAAI	July	2012	9
8	NIPS	July	2012	9

r((author.	$_{pub}$
• •	a autron .	$-\rho \omega o f$

author_id	pub_id	author_position		
1	1	1		
2	2	1		
3	2	2		
4	3	1		
5	4	1		
5	5	1		
6	6	1		

r(pub)

pub_id	title	book_id
1	LISP	1
2	Unix	2
3	Info Theory	3
4	Turing Machines	4
5	Turing Test	5
6	Lambda Calculus	6

Figure 1: Relational Database Schema

1. How many tuples will be returned by the following relational algebra query?

$\pi_{book_title}(book)$

Solution: 7

2. What question does the following expression answer?

 $|\pi_{author_id}(author) - \pi_{editor}(book)|$

Solution: How many authors are not book editors.

3. Write a relational algebra expression that returns the names of all authors who are book editors.

Solution: $\pi_{first_name, last_name}(author \bowtie_{author_id=editor} book)$

4. Write a relational algebra expression that returns the names of all authors who are **not** book editors.

Solution: $\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(book)) * author)$

5. Write a relational algebra expression that returns the names of all authors who have at least one publication in the database.

Solution: $\pi_{first_name,last_name}(author * author_pub)$

6. How many tuples are returned by the following relational algebra expression?

 $author \Join_{author_id=editor} book$

Solution: 11

7. What question does the following relational algebra expression answer?

 $author * (author_pub * (\sigma_{month='July'}(book) * pub))$

Solution: Which authors authored a pub that was published in July?