
Problem Solving Review

Artificial Intelligence

1. What is a planning problem?

Solution: A problem whose solutions are sequences of actions from some initial or current state to
a goal state.

2. Describe open-loop and closed-loop control.

Solution: In an open-loop control system the agent gets no feedback, i.e., sensor input, after exe-
cuting an action. If the agent’s model is perfect and actions are deterministic, then the agent can
operate in an open-loop fashion, simply executing the actions in the solution one after the other.

In a closed-loop control system the agent gets sensory feedback after every action, so it can check
whether the action had the expected effect. If the environment is partially observable or actions are
nondeterministic, closed-loop control is necessary.

3. Write a problem formulation for a world with three unmarked pitchers – an 8 L pitcher full of water, an
empty 5 L pitcher, and an empty 3 L pitcher – where an agent must reallocate the water so that one of
the pitchers contains exactly 4 L of water.

Solution: One of many possibilities:

• States: p =< p1, p2, p3 >, pi ∈ N,
∑3

i=1 pi = 8, c1 = 8, c2 = 5, c3 = 3, ri = ci − pi

• Initial state:< 8, 0, 0 >

• Actions: Actions(p) = pour(f, t) for all f, t where f, t ∈ 1, 2, 3 and f ̸= t and pf > 0 and
rt > 0. Examples:

– actions(< 8, 0, 0 >) = {pour(1, 2), pour(1, 3)}
– actions(< 3, 5, 0 >) = {pour(1, 3), pour(2, 1), pour(2, 3)}

• Transition model:

RESULT (pour(f, t)) =

{
pt ← ct, pf ← pf − rt if rt ≤ pf

pt ← pt + pf , pf ← 0 if rt ≥ pf

• Goal states: pi = 4 for some i ∈ {1, 2, 3}

• Action cost: 1

1



4. Consider the first two levels of a BFS search tree with a start state of< 8, 0, 0 > where the expand(problem, node)
function always enumerates child nodes by choosing actions from “left to right”, that is, choosing the
leftmost source pitcher to pour from, and the leftmost target pitcher to pour to.

< 8, 0, 0 >

< 5, 0, 3 >

< 5, 3, 0 >< 8, 0, 0 >< 0, 5, 3 >

pour(1, 2)

pour(3, 1)

pour(3, 2)

< 3, 5, 0 >

< 3, 2, 3 >< 8, 0, 0 >< 0, 5, 3 >

pour(1, 3)

pour(2, 1)

pour(2, 3)

pour(1, 2) pour(1, 3)

Discuss the implications of this child node expansion order for Depth-First Search.

Solution: In basic Depth-First Search without repeated state-avoidance, the algorithm will get
stuck decending an infinite path down the left side of the search tree, as shown in the first four levels
of the search tree.

< 8, 0, 0 >

< 5, 0, 3 >< 3, 5, 0 >

< 3, 2, 3 >< 8, 0, 0 >< 0, 5, 3 >

< 5, 0, 3 >

< 0, 5, 3 >

pour(1, 2)

pour(2, 1)

pour(1, 3)

pour(2, 1)

pour(2, 3)

pour(1, 2) pour(1, 3)

5. Is Breadth-First Search subject to the same problems discussed in the previous question? Why, or why
not?

Solution: No, because Breadth-First Search expands all the nodes at a particular level in the search
tree before moving to the next level.

Page 2



6. Is Breadth-First Search complete? Why, or why not?

Solution: Yes, because it exands all nodes at each level successively, guaranteeing it will not miss
a goal state as the depth of the search tree increases.

7. Is Depth-First Search complete? Why, or why not?

Solution: No, because even if cycles are avoided, DFS could get stuck searching an infinite in
inifinite state spaces.

8. What is the simplest way to modify Depth-First Search so that it does not descend an infinite path?

Solution: Depth-Limited Depth-First Search limits the depth to which Depth-First Search expands
nodes. This modification can lead to a complete expansion of the tree to the specified depth-limit.

9. Discuss the most important implication of modifying Depth-First Search so that it does not descend an
infinite path.

Solution: If there is no goal state within the depth limit for Depth-Limited Depth-First Search,
then the algorithm will not find a goal state.

10. Describe an algorithm that uses Depth-First Search but is complete.

Solution: Iterative-Deepening Depth-First Search simply runs Depth-Limited Depth-First Search
for iteratively increasing depth limits until a goal state is found.

11. What is the primary tradeoff between Bread-First Search and Depth-First Search?

Solution: Depth-First Search uses less memory, O(bm) where b is branching factor and m is max
depth of tree vs Breadth-First Seaarch, which uses O(bd) memory because it stores all the nodes in
each level as it expands the search tree.

Page 3


