
Artificial Intelligence
Probabilistic Temporal Reasoning (AIMA 14.1-14.2)

Christopher Simpkins

Kennesaw State University

1 / 17

Probabilistic Temporal Reasoning
Recall belief state maintenance from the Kindergarten vacuum world (square not being actively
cleaned can become dirty):

Section 4.4 Search in Partially Observable Environments 151

7

5

6

2 1

3

6

4

8

2 [R,Dirty]Right[L,Clean]

7

5

Suck

Figure 4.17 Two prediction–update cycles of belief-state maintenance in the kindergarten
vacuum world with local sensing.

stochastic, continuous-state environments with the tools of probability theory, as explained in
Chapter 14.

In this section we will show an example in a discrete environment with deterministic
sensors and nondeterministic actions. The example concerns a robot with a particular state
estimation task called localization: working out where it is, given a map of the world and Localization

a sequence of percepts and actions. Our robot is placed in the maze-like environment of
Figure 4.18. The robot is equipped with four sonar sensors that tell whether there is an
obstacle—the outer wall or a dark shaded square in the figure—in each of the four compass
directions. The percept is in the form of a bit vector, one bit for each of the directions north,
east, south, and west in that order, so 1011 means there are obstacles to the north, south, and
west, but not east.

We assume that the sensors give perfectly correct data, and that the robot has a correct
map of the environment. But unfortunately, the robot’s navigational system is broken, so
when it executes a Right action, it moves randomly to one of the adjacent squares. The
robot’s task is to determine its current location.

Suppose the robot has just been switched on, and it does not know where it is—its initial
belief state b consists of the set of all locations. The robot then receives the percept 1011
and does an update using the equation bo =UPDATE(1011), yielding the 4 locations shown
in Figure 4.18(a). You can inspect the maze to see that those are the only four locations that
yield the percept 1011.

Next the robot executes a Right action, but the result is nondeterministic. The new belief
state, ba =PREDICT(bo,Right), contains all the locations that are one step away from the lo-
cations in bo. When the second percept, 1010, arrives, the robot does UPDATE(ba,1010) and
finds that the belief state has collapsed down to the single location shown in Figure 4.18(b).
That’s the only location that could be the result of

UPDATE(PREDICT(UPDATE(b,1011),Right),1010) .

With nondeterministic actions the PREDICT step grows the belief state, but the UPDATE step
shrinks it back down—as long as the percepts provide some useful identifying information.
Sometimes the percepts don’t help much for localization: If there were one or more long east-
west corridors, then a robot could receive a long sequence of 1010 percepts, but never know

▶ Most real-world environments partially observable. Belief state maintenance is core task.
▶ Also known as monitoring, filtering, and state estimation.

b′ = Update(Predict(b, a), o).

▶ Equation above is called a recursive state estimator because it computes the new belief
state from the previous one rather than by examining the entire percept sequence.

Previous methods allowed us to represent belief states as sets of possible worlds, but could not
compute or represent how likely each state were. In this lesson we use the tools of probability
theory to quantify our degree of belief in elements of the belief state.

2 / 17

Elements of Stochastic Temporal Models

A changing world is modeled using
▶ a variable for each aspect of the world state at each point in time,
▶ a transition model describing the probability distribution of the variables at time t, given the

state of the world at past times, and
▶ a sensor model (a.k.a. observation model) describing the probability of each percept at time

t, given the current state of the world.

3 / 17

Time and Uncertainty

Static worlds: each random variable has a single fixed value.
Example: car repair. Car stays broken during diagnosis.
Dynamic worlds: each random variable has a value for each time step which depends on the
values of other random variables in previous time steps.
Example: Diabetes.
▶ Task is to assess current state of the patient – blood sugar and insulin levels – in order to

choose patient’s food intake and insulin dose.
▶ Blood sugar levels and their measurements can change rapidly over time, depending on

recent food intake, insulin doses, metabolic activity, the time of day, and so on.
▶ To assess the current state from the history of evidence and predict the outcomes of

treatment actions, we must model these changes.
Other examples:
▶ Robot location tracking
▶ Tracking national economic activity
▶ Interpreting written or spoken sequences of words

4 / 17

Discrete-Time Models

In Discrete-time models:
▶ World is a series of snapshots or time slices.
▶ Time slices numbered 0, 1, 2, . . .

▶ Time interval ∆ between slides assumed to be the saem for every interval.
▶ Particular applications use particular choices of ∆, e.g., 1

30 of a second.
▶ Choice of ∆ should reflect rates of change.

▶ E.g., blood glucose can change siginificantly in 10 minutes, so ∆ = 1 minute might be
appropriate.

Discrete vs continuous time:
▶ Continuous time systems can be modeled by stochastic differential equations (SDEs).
▶ Descrete-time models presented here are approximations to SDEs.

5 / 17

States and Observations
Each time slice contains a set of random variables:
▶ Xt is a set of unobservable state variables at time t.
▶ Et is a set of observable evidence variables at time t.

Observation at time t is Et = et for some set of values et.
Example: Security guard in underground facility. You are stuck inside with no access to
outside world. Each morning you observe a person walking in with or without an umbrella.
▶ ∆ is one day, each t is a day.
▶ Et contains a single evidence variable, Umbrellat or Ut for short.
▶ Xt contains a single state variable, Raint or Rt for short.

Example: diabetes.
▶ Et = {MeasuredBloodSugart, PulseRatet}
▶ Xt = {BloodSugart, StomacheContentst}

A few assumptions about t:
▶ State sequence starts at time t = 0. (In umbrella world, X = {R0, R1, R2, . . . }.)
▶ Evidence starts arriving at time t = 1. (In umbrella world, E = {U1, U2, . . . }.)
▶ Xa:b denotes set of variables from Xa to Xb, inclusive.

▶ Note: inclusive, unlike Python where U[1:3] includes only U[1] and U[2]

6 / 17

Transition Models

The transition model specifies the probability distribution over the latest state variables, given
previous values: Pr(Xt | X0:t−1)
▶ Problem: X0:t−1) is unbounded – size increases as t increases.
▶ Solution: Markov assumption – current state depends on a finite fixed number of previous

states.
▶ First studied by Andrei Markov (1856-1922), now called Markov processes or Markov chains.

In these Bayes nets:

Section 14.1 Time and Uncertainty 481

Xt–2 Xt–1 Xt(a)

(b)

Xt+1 Xt+2

Xt–2 Xt–1 Xt Xt+1 Xt+2

Figure 14.1 (a) Bayesian network structure corresponding to a first-order Markov process
with state defined by the variables Xt . (b) A second-order Markov process.

14.1.2 Transition and sensor models

With the set of state and evidence variables for a given problem decided on, the next step is
to specify how the world evolves (the transition model) and how the evidence variables get
their values (the sensor model).

The transition model specifies the probability distribution over the latest state variables,
given the previous values, that is, P(Xt |X0:t�1). Now we face a problem: the set X0:t�1 is
unbounded in size as t increases. We solve the problem by making a Markov assumption— Markov assumption

that the current state depends on only a finite fixed number of previous states. Processes
satisfying this assumption were first studied in depth by the statistician Andrei Markov (1856–
1922) and are called Markov processes or Markov chains. They come in various flavors; Markov process

the simplest is the first-order Markov process, in which the current state depends only on First-order Markov
process

the previous state and not on any earlier states. In other words, a state provides enough
information to make the future conditionally independent of the past, and we have

P(Xt |X0:t�1) = P(Xt |Xt�1) . (14.1)

Hence, in a first-order Markov process, the transition model is the conditional distribution
P(Xt |Xt�1). The transition model for a second-order Markov process is the conditional dis-
tribution P(Xt |Xt�2,Xt�1). Figure 14.1 shows the Bayesian network structures correspond-
ing to first-order and second-order Markov processes.

Even with the Markov assumption there is still a problem: there are infinitely many pos-
sible values of t. Do we need to specify a different distribution for each time step? We avoid
this problem by assuming that changes in the world state are caused by a time-homogeneous Time-homogeneous

process—that is, a process of change that is governed by laws that do not themselves change
over time. In the umbrella world, then, the conditional probability of rain, P(Rt |Rt�1), is the
same for all t, and we need specify only one conditional probability table.

Now for the sensor model. The evidence variables Et could depend on previous vari-
ables as well as the current state variables, but any state that’s worth its salt should suffice to
generate the current sensor values. Thus, we make a sensor Markov assumption as follows: Sensor Markov

assumption

P(Et |X0:t ,E1:t�1) = P(Et |Xt) . (14.2)

Thus, P(Et |Xt) is our sensor model (sometimes called the observation model). Figure 14.2
shows both the transition model and the sensor model for the umbrella example. Notice the
direction of the dependence between state and sensors: the arrows go from the actual state
of the world to sensor values because the state of the world causes the sensors to take on
particular values: the rain causes the umbrella to appear. (The inference process, of course,

▶ (a) First-order Markov process: P r(Xt | X0:t−1) = P r(Xt | Xt−1)
▶ (b) Second-order Markov process: P r(Xt | X0:t−1) = P r(Xt | Xt−2, Xt−1)

7 / 17

Time-Homogeneous Processes

Problem:
▶ Inifintely many values of t.
▶ Could be different distributions for each variable at each time step.

Solution: assume time homogeneity, i.e., state changes caused by laws that don’t change over
time.
Example: Umbrella world
▶ Pr(Rt | Rt−1) is the same for all t
▶ Only need one conditional probability table.

8 / 17

Sensor Models

Sensor Markov assumption: state alone is sufficient to generate current sensor values.

Pr(Et | X0:t, E1:t−1) = Pr(Et | Xt) (14.2)

482 Chapter 14 Probabilistic Reasoning over Time

P(Rt|Rt-1)
0.7
0.3

P(Ut|Rt)

Figure 14.2 Bayesian network structure and conditional distributions describing the um-
brella world. The transition model is P(Raint |Raint�1) and the sensor model is
P(Umbrellat |Raint).

goes in the other direction; the distinction between the direction of modeled dependencies
and the direction of inference is one of the principal advantages of Bayesian networks.)

In addition to specifying the transition and sensor models, we need to say how everything
gets started—the prior probability distribution at time 0, P(X0). With that, we have a specifi-
cation of the complete joint distribution over all the variables, using Equation (13.2). For any
time step t,

P(X0:t ,E1:t) = P(X0)
t

’
i=1

P(Xi |Xi�1)P(Ei |Xi) . (14.3)

The three terms on the right-hand side are the initial state model P(X0), the transition model
P(Xi |Xi�1), and the sensor model P(Ei |Xi). This equation defines the semantics of the
family of temporal models represented by the three terms. Notice that standard Bayesian net-
works cannot represent such models because they require a finite set of variables. The ability
to handle an infinite set of variables comes from two things: first, defining the infinite set us-
ing integer indices; and second, the use of implicit universal quantification (see Section 8.2)
to define the sensor and transition models for every time step.

The structure in Figure 14.2 is a first-order Markov process—the probability of rain is
assumed to depend only on whether it rained the previous day. Whether such an assumption
is reasonable depends on the domain itself. The first-order Markov assumption says that the
state variables contain all the information needed to characterize the probability distribution
for the next time slice. Sometimes the assumption is exactly true—for example, if a particle
is executing a random walk along the x-axis, changing its position by ±1 at each time step,
then using the x-coordinate as the state gives a first-order Markov process. Sometimes the
assumption is only approximate, as in the case of predicting rain only on the basis of whether
it rained the previous day. There are two ways to improve the accuracy of the approximation:

1. Increasing the order of the Markov process model. For example, we could make a
second-order model by adding Raint�2 as a parent of Raint , which might give slightly
more accurate predictions. For example, in Palo Alto, California, it very rarely rains
more than two days in a row.

▶ Transition model is Pr(Raint | Raint−1).
▶ Sensor model is Pr(Umbrellat | Raint).
▶ Arrows go from actual state to sensor values: states cause sensor values.

▶ Inference goes in other direction: given sensor values, what are the state values.

9 / 17

Full Joint Distribution Over All Variables in a Temporal Model

For the initial state of the system at time 0 we specify a prior Pr(x0). Now we can use Equation
13.2

Pr(x1, . . . , xn) =
n∏

i=1
Pr(xi|parents(Xi)) (13.2)

applied to the temporal variables in the dynamic version:

Pr(X0:t, E1:t) = Pr(X0)︸ ︷︷ ︸
Initial state model

t∏
i=1

Pr(Xi | Xi−1)︸ ︷︷ ︸
Transition model

Pr(Ei | Xi)︸ ︷︷ ︸
Sensor model

(14.3)

Standard Bayes nets can only represent a finite set of variables. Dynamic Bayes nets overcome
this limitation by:
▶ defining infinite sets by integer indices, and
▶ using implicit universal quantification to define sensor and transition models for every time

step.

10 / 17

Markov Model Considerations
Sometimes Markov assumption is valid, sometimes it’s only an approximation. Two ways to
improve the approximation:

1. Increase the order of the Markov process model. E.g., In Palo Alto, CA, rarely rains more
than two days in a row. A 2nd-order Markov model could express this fact:
Pr(rt | rt−1, rt−2) ≪ Pr(rt | rt−1, ¬rt−2).

2. Add additional state variables. E.g., add Seasont for hisotircal records, or Temperaturet,
Humidityt, and Pressuret to use a physical model of rainy conditions.

Example: Battery drainage in mobile robot. Two state variables: velocity and position. Use
Newton’s laws of motion to calculate new positions. Add probabilistic error (e.g., Gaussian noise)
to account for uncertainty in velocity due to terrain, wind, etc.
Problems:
▶ Battery level affects velocity as it drains.
▶ Battery level depends on power used in all previous movements, violating the Markov

assumption.
Solution: Add a state variable for battery level. Track level in one of two ways:

1. Decrease level at each time step in response to movement executed in previous step.
2. Better: add a new sensor for battery level.

11 / 17

Inference in Temporal Models

Given the general structure of a probabilistic temporal model, we can perform basic inference
tasks:
▶ Filtering, a.k.a., state estimation is the task of computing the belief state Pr(Xt | e1:t)

– the posterior distribution over the most recent state given all the evidence to date.
▶ Prediction is the task of computing the posterior distribution over the future state, given

all evidence to date: Pr(Xt + k | e1:t) for some k > 0.
▶ Smoothing is the task of computing the posterior distribution over a past state, given all

evidence up to the present: Pr(Xk | e1:t) for some k such that 0 ≤ k < t.
▶ Most likely explanation: Given a sequence of observations, we might wish to find the

sequence of states that is most likely to have generated those observations:
argmaxx1:t Pr(x1:t | e1:t).

12 / 17

Learning Temporal Models

Unknown transition and sensor models can be learned from observations.
▶ As with static Bayesian networks, dynamic Bayes net learning can be done as a by-product

of inference.
▶ Inference provides an estimate of transitions that actually occurred and the states that

generated the sensor readings, and these estimates can be used to learn the models.
▶ Learning via iterative update algorithm, expectation–maximization or EM, or Bayesian

updating of the model parameters given the evidence.
We’ll return to these ideas in our lesson on statistical learning.

13 / 17

Filtering

Filtering, a.k.a., state estimation is the task of computing the belief state Pr(Xt | e1:t) –
the posterior distribution over the most recent state given all the evidence to date.
▶ Umbrella example: compute probability of rain today given all umbrella observations so far.
▶ Rational agent estimates its current state to enable rational decisions.
▶ Nearly identical calculation provides likelihood of evidence sequence Pr(e1:t)
▶ The term “filtering” comes from signal processing, which sees the problem of state

estimation as “filtering out the noise” in a signla to estimate its underlying properties.
A useful filtering algorithm needs to maintain a current state estimate and update it, rather than
going back over the entire history of percepts for each update.
▶ Otherwise, the cost of each update increases as time goes by.

In other words, given the result of filtering up to time t, the agent needs to compute the result
for t + 1 from the new evidence et+1. For some function f :

Pr(Xt+1 | f (et+1, P r(Xt | e1:t))

14 / 17

Recursive State Estimation
We can view the calculation as being composed of two parts: first, the current state distribution
is projected forward from t to t + 1; then it is updated using the new evidence et+1. This
two-part process emerges quite simply when the formula is rearranged:

Pr(Xt+1 | e1:t+1) = Pr(Xt+1 | e1:t, et+1) (Divide the evidence)
= αPr(et+1 | Xt+1, e1:t)Pr(Xt+1 | e1:t) (Bayes rule, given e1:t)
= α Pr(et+1 | Xt+1)︸ ︷︷ ︸

update

Pr(Xt+1 | e1:t)︸ ︷︷ ︸
prediction

(Sensor Markov assumption)

Now plug in an expression for one-step prediction Pr(Xt+1 | e1:t) conditioned on the current
state Xt to obtain the central result in probabilistic temoral reasoning:

Pr(Xt+1 | e1:t+1) = αPr(et+1 | Xt+1)
∑
Xt

Pr(Xt+1 | xt, e1:t)Pr(xt | e1:t)

= α Pr(et+1 | Xt+1)︸ ︷︷ ︸
sensor model

∑
Xt

Pr(Xt+1 | xt)︸ ︷︷ ︸
transition model

Pr(xt | e1:t)︸ ︷︷ ︸
recursion

(14.5)

The last step applies the Markov assumption in the transition model. All the terms come either
from the model or from the previous state estimate. Hence, we have the desired recursive
formulation.

15 / 17

Forward Message Propagation

Pr(Xt+1 | e1:t+1) = α Pr(et+1 | Xt+1)︸ ︷︷ ︸
sensor model

∑
Xt

Pr(Xt+1 | xt)︸ ︷︷ ︸
transition model

Pr(xt | e1:t)︸ ︷︷ ︸
recursion

(14.5)

We can think of the filtered estimate Pr(Xt | e1:t) as a “message” f1:t that is propagated
forward along the sequence, modified by each transition and updated by each new observation.
The process is given by

f1:t+1 = FORWARD(f1:t, et+1)

where
▶ FORWARD implements the update in Equation 14.5 and
▶ the process begins with f1:0 = Pr(X0).

When all the state variables are discrete, the time for each update is constant (i.e., independent
of t), and the space required is also constant. (The constants depend, of course, on the size of
the state space and the specific type of the temporal model in question.)
▶ The time and space requirements for updating must be constant if a finite agent is to keep

track of the current state distribution indefinitely.

16 / 17

Example: Filtering in the Umbrella World
Compute Pr(R2 | u1:2):
▶ Day 0: no observations, only prior

beliefs: Pr(R0) = ⟨0.5, 0.5⟩
▶ Day 1: umbrealla appears, U1 = true.

Prediction from t = 0 : 1:

Pr(R1) =
∑
r0

Pr(R1 | r0)Pr(r0)

= ⟨0.7, 0.3⟩ · 0.5 + ⟨0.3, 0.7⟩ · 0.5
= ⟨0.5, 0.5⟩

Then update step incorporates
evidence for t = 1 and normalizes:

Pr(R1 | u1) = αPr(u1 | R1)Pr(R1)
= α⟨0.9, 0.2⟩⟨0.5, 0.5⟩
= α⟨0.45, 0.1⟩
≈ ⟨0.818, 0.182⟩

482 Chapter 14 Probabilistic Reasoning over Time

P(Rt|Rt-1)
0.7
0.3

P(Ut|Rt)

Figure 14.2 Bayesian network structure and conditional distributions describing the um-
brella world. The transition model is P(Raint |Raint�1) and the sensor model is
P(Umbrellat |Raint).

goes in the other direction; the distinction between the direction of modeled dependencies
and the direction of inference is one of the principal advantages of Bayesian networks.)

In addition to specifying the transition and sensor models, we need to say how everything
gets started—the prior probability distribution at time 0, P(X0). With that, we have a specifi-
cation of the complete joint distribution over all the variables, using Equation (13.2). For any
time step t,

P(X0:t ,E1:t) = P(X0)
t

’
i=1

P(Xi |Xi�1)P(Ei |Xi) . (14.3)

The three terms on the right-hand side are the initial state model P(X0), the transition model
P(Xi |Xi�1), and the sensor model P(Ei |Xi). This equation defines the semantics of the
family of temporal models represented by the three terms. Notice that standard Bayesian net-
works cannot represent such models because they require a finite set of variables. The ability
to handle an infinite set of variables comes from two things: first, defining the infinite set us-
ing integer indices; and second, the use of implicit universal quantification (see Section 8.2)
to define the sensor and transition models for every time step.

The structure in Figure 14.2 is a first-order Markov process—the probability of rain is
assumed to depend only on whether it rained the previous day. Whether such an assumption
is reasonable depends on the domain itself. The first-order Markov assumption says that the
state variables contain all the information needed to characterize the probability distribution
for the next time slice. Sometimes the assumption is exactly true—for example, if a particle
is executing a random walk along the x-axis, changing its position by ±1 at each time step,
then using the x-coordinate as the state gives a first-order Markov process. Sometimes the
assumption is only approximate, as in the case of predicting rain only on the basis of whether
it rained the previous day. There are two ways to improve the accuracy of the approximation:

1. Increasing the order of the Markov process model. For example, we could make a
second-order model by adding Raint�2 as a parent of Raint , which might give slightly
more accurate predictions. For example, in Palo Alto, California, it very rarely rains
more than two days in a row.

▶ Day 2: umbrella appears, U2 = true. Prediction
from t = 1 : 2:

Pr(R2 | u1) =
∑
r1

Pr(R2 | r1)Pr(r1 | u1)

= ⟨0.7, 0.3⟩ · 0.818 + ⟨0.3, 0.7⟩ · 0.182
≈ ⟨0.627, 0.373⟩

Then update step incorporates evidence for
t = 2:

Pr(R2 | u1, u2) = αPr(u2 | R2)Pr(R2 | u1)
= α⟨0.9, 0.2⟩⟨0.627, 0.373⟩
= α⟨0.565, 0.075⟩
≈ ⟨0.883, 0.117⟩

17 / 17

