Artificial Intelligence

Probabilistic Inference

Christopher Simpkins

Kennesaw State University

Exact Inference in Bayesian Networks (AIMA 13.3)

Most common task in probabilistic inference: compute the *posterior probability* of a set of **query variables** given some **event** represented as a set of **evidence variables**.

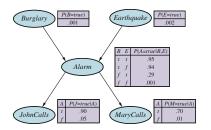
Notation:

- Query variable: X
- Set of evidence variables: $E = \{E_1, \dots, E_m\}$
- Particular observed event: e
- ▶ Hidden (nonevidence, nonquery) variables: $\mathbf{Y} = \{Y_1, \dots, Y_l\}$
- ▶ Typical query: $Pr(X \mid e)$

Example:

- X is the boolean random variable Burglary
- $ightharpoonup E = \{JohnCalls, MaryCalls\}$
- $ightharpoonup e = \{JohnCalls = true, MaryCalls = true\}$
- $ightharpoonup Y = \{EarthQuake, Alarm\}$

$$Pr(Buglary \mid JohnCalls = true, MaryCalls = true) = < 0.284, 0.716 > .$$



Inference by Enumeration

Recall that we can use the full joint distribution to answer any query:

$$Pr(X|\mathbf{e}) = \alpha Pr(X, \mathbf{e}) = \alpha \sum_{y} Pr(X, \mathbf{e}, \mathbf{y})$$
 (12.9)

And that a Bayes net completely represents the full joint distribution, so we can reduce the computation of a joint to:

$$Pr(x_1, \dots, x_n) = \prod_{i=1}^n Pr(x_i|parents(X_i))$$
(13.2)

Using these two equations we can enumerate the appropriate probabilities to calculate the answer to any probabilistic query.

In particular, we can get the answer by computing sums of products of conditional probabilities from a Bayes net.

Example: $Pr(Burglary \mid JohnCalls = true, MaryCalls = true)$.

Using abbreviations and substituting into Eq 12.9 above (e and a are hidden):

$$Pr(B \mid j, m) = \alpha Pr(B, j, m) = \alpha \sum_{e} \sum_{a} Pr(B, j, m, e, a)$$

Then we substitute Eq 13.2 for Pr(B, j, m, e, a) to get (only showing Burglary=true):

$$Pr(b \mid j, m) = \alpha \sum_{e} \sum_{a} Pr(b)Pr(e)Pr(a \mid b, e)Pr(j \mid a)Pr(m \mid a)$$

$$= \alpha Pr(b) \sum_{e} \sum_{a} Pr(e)Pr(a \mid b, e)Pr(j \mid a)Pr(m \mid a)$$

$$= \alpha Pr(b) \sum_{e} Pr(e) \sum_{a} Pr(a \mid b, e)Pr(j \mid a)Pr(m \mid a)$$

$$(3)$$

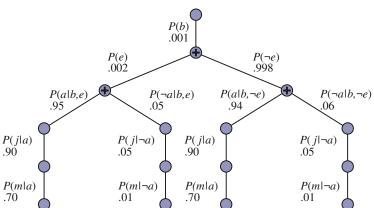
- 1. Substitute Eq 13.2 for Pr(B, j, m, e, a)
- 2. Pull out Pr(b) from summations because it doesn't depend on the other variable and is thus a constant in all the summation terms.
- 3. Pull out Pr(e) from the summation over the a values because each value of e doesn't depend on the other variables in the summation over the a values and is thus a constant in the summation terms over the values of a.

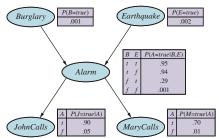
Caclulation of $Pr(b \mid j, m)$

Substiting the values from the CPTs in the Bayes net into

$$\alpha Pr(b) \sum_{e} Pr(e) \sum_{a} Pr(a \mid b, e) Pr(j \mid a) Pr(m \mid a)$$

we get the expression tree:





Enumeration Algorithm

The ENUMERATION-ASK algorithm evaluates these expression trees using depth-first, left-to-right recursion.

```
function ENUMERATION-ASK(X, \mathbf{e}, bn) returns a distribution over X
```

inputs: X, the query variable

e, observed values for variables **E** bn, a Bayes net with variables vars

$$\mathbf{Q}(X) \leftarrow$$
 a distribution over X , initially empty

for each value x_i of X **do**

 $\mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(vars, \mathbf{e}_{x_i})$ where \mathbf{e}_{x_i} is \mathbf{e} extended with $X = x_i$

return NORMALIZE($\mathbf{Q}(X)$)

function ENUMERATE-ALL(vars, e) returns a real number

if EMPTY?(vars) then return 1.0

 $V \leftarrow \text{First}(vars)$

if V is an evidence variable with value v in e

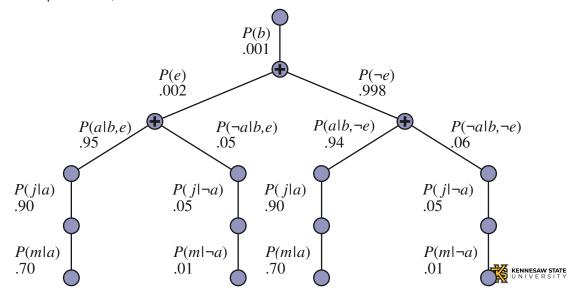
then return $P(v | parents(V)) \times \text{Enumerate-All(Rest(vars), e)}$

else return $\sum_{v} P(v | parents(V)) \times \text{Enumerate-All(Rest(vars)}, \mathbf{e}_{v})$

where \mathbf{e}_{v} is \mathbf{e} extended with V = v

Repeated Calculations

Notice that the subexpressions for the products $Pr(j \mid a)Pr(m \mid a)$ and $Pr(j \mid \neg a)Pr(m \mid \neg a)$ are computed twice, once for each value of E.



Variable Elimination

The enumeration algorithm can be improved substantially by eliminating repeated calculations.

- ▶ Idea: do the calculation once and save the results for later use.
- ► This is a form of dynamic programming.
- ▶ Several versions of this approach; variable elimination algorithm is simplest.

Variable elimination works by evaluating expressions such as

$$Pr(b \mid j, m) = \alpha Pr(b) \sum_{e} Pr(e) \sum_{a} Pr(a \mid b, e) Pr(j \mid a) Pr(m \mid a)$$
 (13.5)

in right-to-left order (that is, bottom up in the expression tree), storing intermediate results, and only doing summations for portions of the expression that depend on the variable.

Example: Variable Elimination in Burglary Network

First, annotate the **factor**s in the expression for the network:

$$Pr(B \mid j,m) = \alpha \underbrace{Pr(B)}_{f_1(B)} \underbrace{\sum_{e} \underbrace{Pr(e)}_{f_2(E)} \sum_{a} \underbrace{Pr(a \mid B,e)}_{f_3(A,B,E)} \underbrace{Pr(j \mid a)}_{f_4(A)} \underbrace{Pr(m \mid a)}_{f_5(A)}$$

- ► Each factor is a matrix indexed by the values of its argument variables.
- Notice that the factors for $Pr(j \mid a)$ and Pr(m|a) do not include j and m. This is because the values of j and m (JohnCalls = true and MaryCalls true) are fixed by the query.

So the factors are:

$$\mathbf{f}_{1}(B) = \begin{bmatrix} Pr(b) \\ Pr(\neg b) \end{bmatrix} = \begin{bmatrix} 0.001 \\ 0.999 \end{bmatrix} \qquad \qquad \mathbf{f}_{2}(E) = \begin{bmatrix} Pr(e) \\ Pr(\neg e) \end{bmatrix} = \begin{bmatrix} 0.002 \\ 0.998 \end{bmatrix}$$

$$\mathbf{f}_{4}(A) = \begin{bmatrix} Pr(j \mid a) \\ Pr(j \mid \neg a) \end{bmatrix} = \begin{bmatrix} 0.090 \\ 0.05 \end{bmatrix} \qquad \qquad \mathbf{f}_{5}(A) = \begin{bmatrix} Pr(m \mid a) \\ Pr(m \mid \neg a) \end{bmatrix} = \begin{bmatrix} 0.070 \\ 0.01 \end{bmatrix}$$

 $f_3(A, B, E)$ is a little more complicated ...

$f_3(A,B,E)$

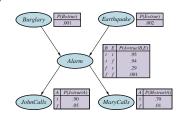
$$Pr(B \mid j,m) = \alpha \underbrace{Pr(B)}_{\mathbf{f}_1(B)} \underbrace{\sum_{e} \underbrace{Pr(e)}_{\mathbf{f}_2(E)} \sum_{a} \underbrace{Pr(a \mid B,e)}_{\mathbf{f}_3(A,B,E)} \underbrace{Pr(j \mid a)}_{\mathbf{f}_4(A)} \underbrace{Pr(m \mid a)}_{\mathbf{f}_5(A)}$$

 $f_3(A,B,E)$ is a $2\times2\times2$ matrix (or a rank-3 tensor). Here's one way to think about it:

- First index with A, yielding two 2×2 submatrices (one for each of the two values of A).
- ightharpoonup Rows of each submatrix is indexed by B and columns by E.
- lacktriangle The entries in the submatrices are the values of $Pr(A\mid B,E)$

$$\boldsymbol{f}_{3}^{(a)}(B,E) = \begin{bmatrix} Pr(a \mid b,e) & Pr(a \mid b,\neg e) \\ Pr(a \mid \neg b,e) & Pr(a \mid \neg b,\neg e) \end{bmatrix} = \begin{bmatrix} 0.95 & 0.94 \\ 0.29 & 0.001 \end{bmatrix}$$

$$\boldsymbol{f}_{3}^{(\neg a)}(B,E) = \begin{bmatrix} Pr(\neg a \mid b,e) & Pr(\neg a \mid b,\neg e) \\ Pr(\neg a \mid \neg b,e) & Pr(\neg a \mid \neg b,\neg e) \end{bmatrix} = \begin{bmatrix} 0.05 & 0.06 \\ 0.71 & 0.999 \end{bmatrix}$$



Factorized Query

From our original query:

$$Pr(b \mid j, m) = \alpha Pr(b) \sum_{e} Pr(e) \sum_{a} Pr(a \mid b, e) Pr(j \mid a) Pr(m \mid a)$$
 (13.5)

We annotated the factors:

$$Pr(B \mid j, m) = \alpha \underbrace{Pr(B)}_{f_1(B)} \underbrace{\sum_{e} \underbrace{Pr(e)}_{f_2(E)} \sum_{a} \underbrace{Pr(a \mid B, e)}_{f_3(A, B, E)} \underbrace{Pr(j \mid a)}_{f_4(A)} \underbrace{Pr(m \mid a)}_{f_5(A)}$$

And now we substitute the factor expressions for the original expresions so we can manipulate the factors using the **pointwise product** operation, denoted with \times here:

$$Pr(B \mid j, m) = \alpha \mathbf{f}_1(B) \times \sum_e \mathbf{f}_2(E) \times \sum_a \mathbf{f}_3(A, B, E) \times \mathbf{f}_4(A) \times \mathbf{f}_5(A)$$

Now we are ready to evaluate the expression . . .

Expression Evaluation

First, sum out A from the pointwise product of $f_3(A, B, E)$, $f_4(A)$, and $f_5(A)$ yielding a new 2×2 factor, $f_6(B, E)$:

$$f_6(B, E) = \sum_a \mathbf{f}_3(A, B, E) \times \mathbf{f}_4(A) \times \mathbf{f}_5(A)$$
$$= (\mathbf{f}_3(a, B, E) \times \mathbf{f}_4(a) \times \mathbf{f}_5(a)) + (\mathbf{f}_3(\neg a, B, E) \times \mathbf{f}_4(\neg a) \times \mathbf{f}_5(\neg a))$$

Now the query expression is $Pr(B \mid j, m) = \alpha f_1(B) \times \sum_e f_2(E) \times f_6(B, E)$

Next, sum out E from the product of $f_2(E)$ and $f_6(B,E)$, yielding a new factor $f_7(B)$:

$$egin{aligned} oldsymbol{f}_7(B) &= \sum_e oldsymbol{f}_2(E) imes oldsymbol{f}_6(B,E) \ &= oldsymbol{f}_2(e) imes oldsymbol{f}_6(B,e) + oldsymbol{f}_2(
eg) imes oldsymbol{f}_6(B,
eg) \end{aligned}$$

Which leaves our final form of the query: $Pr(B \mid j, m) = \alpha f_1(B) \times f_7(B)$

This expression can be evaluated by taking the pointwise product and normalizing the result.

Operations on Factors

Two basic operations in variable elimination:

- 1. the pointwise product operation, and
- 2. summing out hidden variables from products of factors.

Pointwise Product Example

The pointwise product of two factors f and g yields a new factor h whose variables are the union of the variables in f and g and whose elements are given by the product of the corresponding elements in the two factors.

If we have X,Y,Z boolean variables, then here's the result of pointwise product $f(X,Y) \times g(Y,Z) = h(X,Y,Z)$:

X	Y	$\mathbf{f}(X,Y)$	Y	Z	$\mathbf{g}(Y,Z)$	X	Y	Z	$\mathbf{h}(X,Y,Z)$
t	t	.3	t	t	.2	t	t	t	$.3 \times .2 = .06$
t	f	.7	t	f	.8	t	t	f	$.3 \times .8 = .24$
f	t	.9	f	t	.6	t	f	t	$.7 \times .6 = .42$
f	f	.1	f	f	.4	t	f	f	$.7 \times .4 = .28$
						f	t	t	$.9 \times .2 = .18$
						f	t	f	$.9 \times .8 = .72$
						f	f	t	$.1 \times .6 = .06$
						f	f	f	$.1 \times .4 = .04$

Summing out Variables

Summing out a variable from a product of factors is done by adding up the submatrices formed by fixing the variable to each of its values in turn. For example, to sum out X from h(X,Y,Z), we write

$$h_2(Y, Z) = \sum_x h(X, Y, Z)$$

$$= h(x, Y, Z) + h(\neg x, Y, Z)$$

$$= \begin{bmatrix} .06 & .24 \\ .42 & .28 \end{bmatrix} + \begin{bmatrix} .18 & .72 \\ .06 & .04 \end{bmatrix}$$

$$= \begin{bmatrix} .24 & .96 \\ .48 & .32 \end{bmatrix}$$

Variable Elimination Algorithm

With these two basic operations, we can implement the variable elimination algorithm:

```
function ELIMINATION-ASK(X, \mathbf{e}, bn) returns a distribution over X inputs: X, the query variable \mathbf{e}, observed values for variables \mathbf{E} bn, a Bayesian network with variables vars factors \leftarrow [] for each V in ORDER(vars) do factors \leftarrow [MAKE-FACTOR(V, \mathbf{e})] + factors if V is a hidden variable then factors \leftarrow SUM-OUT(V, factors) return NORMALIZE(POINTWISE-PRODUCT(factors))
```

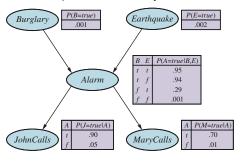
Notes about the order function:

- Any ordering works, some orderings lead to more efficient algorithms.
- No tractable algorithm for determining optimal ordering.
- ▶ One heuristic: eliminate whichever variable minimizes the size of the next factor to be contructed.
- General rule: every variable that is not an ancestor of a query variable or evidence variable is irrelevant to the query.

Complexity of Exact Inference in Polytrees

Notice that the Alarm Bayes net is **singly connected**, a.k.a., a **polytree**:

▶ there is at mose one undirected path between any two nodes in the network.



The time and space complexity of polytrees is linear in the size of the network.

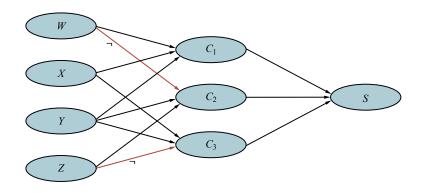
- Size of network is defined as number of CPT entries.
- ▶ If $|parents(X_i)| \le c, \forall i \in n$ for some constant c and number of nodes n, then complexity is also linear in number of nodes.

Complexity of Exact Inference in Multiply-connected Networks

Now consider **multiply-connected** such as the car insurance network:

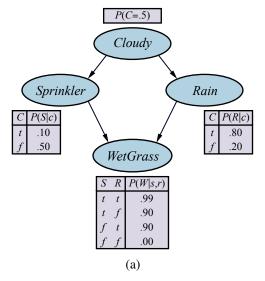
- ► Variable elimination can have exponential worst-case time and space complexity in multiply-connected networks.
- ► Since inference in Bayes nets includes inference in propositional logic as a special case, Bayes net inference is **NP-hard**.

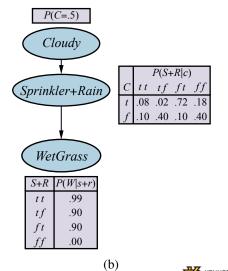
Complexity of SAT



Clustering Algorithms

aka join trees.





Direct Sampling Methods

foo

Prior Sampling

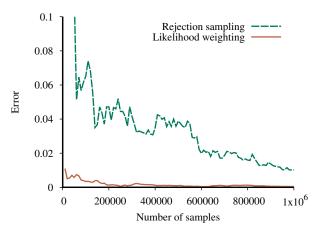
```
function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn inputs: bn, a Bayesian network specifying joint distribution \mathbf{P}(X_1, \dots, X_n) \mathbf{x} \leftarrow an event with n elements for each variable X_i in X_1, \dots, X_n do \mathbf{x}[i] \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i)) return x
```


Rejection Sampling

Importance Sampling

```
function LIKELIHOOD-WEIGHTING(X, \mathbf{e}, bn, N) returns an estimate of P(X | \mathbf{e})
  inputs: X, the query variable
            e, observed values for variables E
             bn, a Bayesian network specifying joint distribution \mathbf{P}(X_1, \dots, X_n)
             N, the total number of samples to be generated
   local variables: W, a vector of weighted counts for each value of X, initially zero
  for j = 1 to N do
       \mathbf{x}, w \leftarrow \text{Weighted-Sample}(bn, \mathbf{e})
       \mathbf{W}[j] \leftarrow \mathbf{W}[j] + w where x_i is the value of X in \mathbf{x}
   return NORMALIZE(W)
function WEIGHTED-SAMPLE(bn, e) returns an event and a weight
  w \leftarrow 1; \mathbf{x} \leftarrow an event with n elements, with values fixed from \mathbf{e}
  for i = 1 to n do
       if X_i is an evidence variable with value x_{ij} in e
            then w \leftarrow w \times P(X_i = x_{i,i} | parents(X_i))
            else \mathbf{x}[i] \leftarrow a random sample from \mathbf{P}(X_i | parents(X_i))
   return x, w
```

Rejection vs. Importance Sampling



Markov Chain Monte Carlo (MCMC) Algorithms

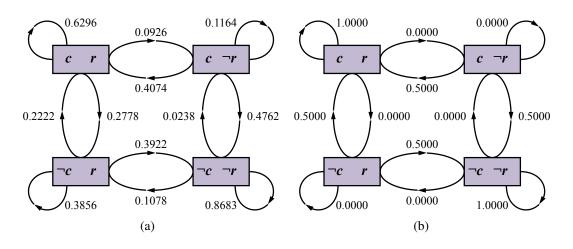
Instead of generating each sample from scratch, MCMC algorithms generate a sample by making a random change to the preceding sample. Think of an MCMC algorithm as being in a particular current state that specifies a value for every variable and generating a next state by making random changes to the current state.

Gibbs Sampling

```
function GIBBS-ASK(X, \mathbf{e}, bn, N) returns an estimate of \mathbf{P}(X | \mathbf{e})
local variables: \mathbf{C}, a vector of counts for each value of X, initially zero \mathbf{Z}, the nonevidence variables in bn
\mathbf{x}, the current state of the network, initialized from \mathbf{e}
initialize \mathbf{x} with random values for the variables in \mathbf{Z}
for k = 1 to N do

choose any variable Z_i from \mathbf{Z} according to any distribution \rho(i) set the value of Z_i in \mathbf{x} by sampling from \mathbf{P}(Z_i | mb(Z_i))
\mathbf{C}[j] \leftarrow \mathbf{C}[j] + 1 \text{ where } x_j \text{ is the value of } X \text{ in } \mathbf{x}
return NORMALIZE(\mathbf{C})
```


Markov Chains



Gibbs Sampling vs. Importance Sampling

