Artificial Intelligence

Probabilistic Inference

Christopher Simpkins

Kennesaw State University

1 /920



Exact Inference in Bayesian Networks (AIMA 13.3)

Most common task in probabilistic inference: compute the posterior probability of a set of query
variables given some event represented as a set of evidence variables.

Burglary

Notation:
» Query variable: X
> Set of evidence variables: E = {E1,...,E,,}
> Particular observed event: e
» Hidden (nonevidence, nonquery) variables: Y = {Y7,...,Y;}
> Typical query: Pr(X |e)

Example:
» X is the boolean random variable Burglary
» E = {JohnCalls, MaryCalls}
» e = {JohnCalls = true, MaryCalls = true}
> Y = {FEarthQuake, Alarm}

Pr(Buglary | JohnCalls = true, MaryCalls = true) =< 0.284,0.716 > .

E| PA=truelB.E)
t .95

f 94
i

f

29
001

P(=truelA)
t 90
.05

A PM=truelA)]
t 70
f 01




Inference by Enumeration

Recall that we can use the full joint distribution to answer any query:

Pr(Xle) = aPr(X,e)=a» Pr(X,e,y) (12.9)

And that a Bayes net completely represents the full joint distribution, so we can reduce the
computation of a joint to:

n

Pr(zy,...,z,) = H Pr(z;|parents(X;)) (13.2)
i=1

Using these two equations we can enumerate the appropriate probabilities to calculate the answer
to any probabilistic query.

» In particular, we can get the answer by computing sums of products of conditional
probabilities from a Bayes net.

2 /20



Example: Pr(Burglary | JohnCalls = true, MaryCalls = true).

Using abbreviations and substituting into Eq 12.9 above (e and a are hidden):

Pr(B | j,m) = aPr(B,jm —QZZPTB],mea)

Then we substitute Eq 13.2 for Pr(B, j,m,e,a) to get (onyly showing Burglary=true):

Pr(b|j,m) = aZZPr(b)Pr(e)Pr(a | b,e)Pr(j| a)Pr(m|a) (1)
= aPr(b) Z ZPr(e)Pr(a | b,e)Pr(j| a)Pr(m|a) (2)
= aPr(b) ZPr(e) ZPr(a |b,e)Pr(j| a)Pr(m|a) (3)

1. Substitute Eq 13.2 for Pr(B, j,m,e,a)
2. Pull out Pr(b) from summations because it doesn't depend on the other variable and is
thus a constant in all the summation terms.
3. Pull out Pr(e) from the summation over the a values because each value of e doesn't
depend on the other variables in the summation over the a values and is thus a constant in
the summation terms over the values of a. KENNESAW STATE

IVERSI

Steps 2 and 3 above reduce the complexity of the computation from O(n2™) to O(2").

A /920



Caclulation of Pr(b| j,m)

Substiting the values from the CPTs in the Bayes net into

Earthquake

P(A=true|B,E)

Burglary

[_oor |

aPr(b)> Pr(e) Y Pr(a|b,e)Pr(j|a)Pr(m| a)

we get the expression tree:

P(=truelA) A P(M=truelA)
[ 70
f 01
P(e) P(=e)
.002 .998

P(-albe)  Palb,-e) P(~alb,-e)
.05 94 06

P(jla)
.90
P(mla)
.70

5 /20



Enumeration Algorithm

The ENUMERATION-ASK algorithm evaluates these expression trees using depth-first,
left-to-right recursion.

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayes net with variables vars

Q(X) < a distribution over X, initially empty
for each value x; of X do
Q(x;) ¢~ ENUMERATE-ALL(vars, ey,)
where e, is e extended with X = x;
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, €) returns a real number
if EMPTY ?(vars) then return 1.0
V < FIRST(vars)
if V is an evidence variable with value v in e
then return P(v| parents(V)) x ENUMERATE-ALL(REST(vars), )
else return Y, P(v|parents(V)) x ENUMERATE-ALL(REST(vars),e,)
where e, is e extended with V= v % CNNERETTY

Unfortunately, its time complexity is O(s™). But we can improve it ...

6 /20



Repeated Calculations

Notice that the subexpressions for the products Pr(j | a)Pr(m | a) and Pr(j | —a)Pr(m | —a)
are computed twice, once for each value of E.

P(b)
.001

P(=alb,—e)

P(=alb,e) P(alb,—e)
.94

95 .05



Variable Elimination

The enumeration algorithm can be improved substantially by eliminating repeated calculations.

> |dea: do the calculation once and save the results for later use.
» This is a form of dynamic programming.
> Several versions of this approach; variable elimination algorithm is simplest.

Variable elimination works by evaluating expressions such as

Pr(|j,m)=aPr( ZPr )ZPr(a | b,e)Pr(j| a)Pr(m|a) (13.5)

in right-to-left order (that is, bottom up in the expression tree), storing intermediate results, and
only doing summations for portions of the expression that depend on the variable.

Q /9209



Example: Variable Elimination in Burglary Network
First, annotate the factors in the expression for the network:

Pr(B|j,m)=aPr(B ZP?“ ZPra|B e)Pr(j|a)Pr(m|a)
- i — —
fl(B) f2(E) f3(A,B,E) fa(A) fs5(A)
» Each factor is a matrix indexed by the values of its argument variables.

> Notice that the factors for Pr(j | a) and Pr(m|a) do not include j and m. This is because
the values of j and m (JohnCalls = true and MaryCalls — true) are fixed by the query.

So the factors are:

nim) =[] = o] 280 = [ ] = oo
fa(4) = Li?%ljg)} - [00.90950} F5(4) = [Jir(g;n ||ﬂa¢2)} - [00.90710}

f3(A, B, E) is a little more complicated . ..

KENNESAW STATE
IVERSI

q /209



fS(AaB7E>

Pr(B|j,m)=aPr(B ZP’/‘ ZPra|B e)Pr(j|a)Pr(m|a)
. ——
fl(B) fz(E) F3(A,B,E) Fa(A) I5(A)
f3(A,B,E) is a2 x 2 x 2 matrix (or a rank-3 tensor). Here's one way to think about it:

> First index with A, yielding two 2 x 2 submatrices (one for each of the two values of A).
» Rows of each submatrix is indexed by B and columns by E.
» The entries in the submatrices are the values of Pr(A | B, E)

E| P(A=truelB.E)
95

f 94

t

iL

) (B, B) — [Pr(a |be)  Pr(alb, —\e)} B [0.95 0.94}

Pr(a|—b,e) Pr(al]-b—-e)| (029 0.001

29
001

Al PM=truel)]

i 70

f 01

KENNESAW STATE
IVERSI

10 /20

A PU=truelA)
i 90
i 05

(o) (3. ) — [Pr(—\a |be)  Pr(-alb, —\e)] _ [0.05 0.06]

Pr(—a | —b,e) Pr(-a|—b,—e) 0.71 0.999




Factorized Query

From our original query:
Pr(b|j,m)=aPr( ZPr )ZPr(a |b,e)Pr(j| a)Pr(m|a) (13.5)
a
We annotated the factors:

Pr(B|j,m) = aPT E P’/’ E Pr(a| B,e) Pr(j | a) Pr(m | a)
. - %/—/H/—’E/—/
fl(B) fz(E) f3(A,B,E) Fa(A) I5(A)

And now we substitute the factor expressions for the original expresions so we can manipulate
the factors using the pointwise product operation, denoted with X here:

Pr(B|j,m)=afi(B Zfz x Y f3(A, B, E) x fa(A) x f5(A)

Now we are ready to evaluate the expression ...



Expression Evaluation

First, sum out A from the pointwise product of f3(A, B, E), fi4(A4), and f5(A) yielding a new
2 x 2 factor, fs(B, E):

fo(B,E) = f3(A, B, E) x fi(A) x f5(A)
= (f3(a, B, E) x fa(a) x f5(a)) + (fs(=a, B, E) x fa(=a) x f5(-a))

Now the query expression is Pr(B | j,m) = afi(B) x>, fo(E) x fe(B,E)
Next, sum out E from the product of fo(E) and fs(B, E), yielding a new factor f7(B):

Zﬁ )  f(B, E)
= f2( ) X fo(B,e) + fz2(—e) x fo(B,—e)

Which leaves our final form of the query: Pr(B | j,m) = afi(B) x f(B)

This expression can be evaluated by taking the pointwise product and normalizing the result.

KENNESAW STATE
IVERSI

12 /209



Operations on Factors

Two basic operations in variable elimination:

1. the pointwise product operation, and
2. summing out hidden variables from products of factors.

12 /20



Pointwise Product Example

The pointwise product of two factors f and g yields a new factor h whose variables are the
union of the variables in f and g and whose elements are given by the product of the

corresponding elements in the two factors.

If we have XY, Z boolean variables, then here’s the result of pointwise product

FX,Y)xg(Y,Z2)=h(X,Y, 2):

X Y f(X,Y) Y Z g(Y,2) X Y Z h(X,Y,Z)
t t 3 t t 2 t t t 3x.2=.06
t f 7 t f .8 t t f 3x.8=.24
f t 9 f t .6 t f t T x.6=.42
f f 1 f f 4 t f f T x .4=.28
f t t 9x.2=.18
f t f 9x.8=.72
f f t .1 x.6=.06
f f f Ax.4=.04

IVERSI

KENNESAW STATE
UN TY

14 /20



Summing out Variables

Summing out a variable from a product of factors is done by adding up the submatrices formed

by fixing the variable to each of its values in turn. For example, to sum out X from h(X,Y, Z),
we write

ho(Y,Z) =Y h(X,Y,2)
=h(z,Y,Z) + h(-z,Y, Z)
_[06 247 [a8 72
|42 28| 7|06 .04

24 .96
48 32



Variable Elimination Algorithm

With these two basic operations, we can implement the variable elimination algorithm:

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables vars

factors ||
for each V in ORDER(vars) do

factors < [MAKE-FACTOR(V,e)] + factors

if V is a hidden variable then factors < SUM-OUT(V, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))

Notes about the order function:

» Any ordering works, some orderings lead to more efficient algorithms.

» No tractable algorithm for determining optimal ordering.

» One heuristic: eliminate whichever variable minimizes the size of the next factor to be
contructed.

» General rule: every variable that is not an ancestor of a query variable or evidence variable is
irrelevant to the query. % KENNESAW STATE

NIVERSITY

16 /20



Complexity of Exact Inference in Polytrees

Notice that the Alarm Bayes net is singly connected, a.k.a., a polytree:
» there is at mose one undirected path between any two nodes in the network.

_.001 _
P(A=truel|B,E)
95
94
29
001

Al P(M=truelA)
t .70

f 01

P(J=truelA)
.90
.05

ES

The time and space complexity of polytrees is linear in the size of the network.

» Size of network is defined as number of CPT entries.

» If |parents(X;)| < ¢,Vi € n for some constant ¢ and number of nodes n, then complexity

is also linear in number of nodes.

KENNESAW STATE
UNIVERSITY

17 /20



Complexity of Exact Inference in Multiply-connected Networks

Now consider multiply-connected such as the car insurance network:

» Variable elimination can have exponential worst-case time and space complexity in
multiply-connected networks.

» Since inference in Bayes nets includes inference in propositional logic as a special case,
Bayes net inference is NP-hard.

12 /20



Complexity of SAT




Clustering Algorithms

aka join trees.

P(Sle)
tf .10
£l 50

P(W|s,r)

[~~~ =~ |

~ ~ = ~[=

99
.90
.90

.00

(a)

P(R[c)

.80
.20

P(S+RIc)
Sprinkler+Rain) | Cltt tf St Jf
t].08 .02 .72 .18
f].10 .40 .10 .40
R |P(W|s+1)
tt .99
| 90
ft .90
Sf ] .00
(b)



Direct Sampling Methods

foo



Prior Sampling

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn, a Bayesian network specifying joint distribution P(Xj,...,X,)

X <—an event with n elements
for each variable X; in X1,...,X, do

x[i] +—a random sample from P(X; | parents(X;))
return x

29 /90



Rejection Sampling

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X | e)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network
N, the total number of samples to be generated
local variables: C, a vector of counts for each value of X, initially zero

forj=1to N do
X < PRIOR-SAMPLE(bn)
if x is consistent with e then
C[jl ¢ CJjl+1 where x; is the value of X in x
return NORMALIZE(C)

22 /20



Importance Sampling

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network specifying joint distribution P(X,...,X,)
N, the total number of samples to be generated
local variables: W, a vector of weighted counts for each value of X, initially zero

forj=1to N do

X, w<— WEIGHTED-SAMPLE(bn, €)

W/j] <~ W[j] +w where x; is the value of X in x
return NORMALIZE(W)

function WEIGHTED-SAMPLE(bn, €) returns an event and a weight

w<—1; X< an event with n elements, with values fixed from e
fori=1tondo
if X; is an evidence variable with value x;; in e
then w«w x P(X;= x;; | parents(X;))
else x[i] < a random sample from P(X; | parents(X;))
return x, w % KENN

24 /20



Rejection vs. Importance Sampling

0.1
I Rejection sampling ———-
| Likelihood weighting
0.08 - }
| A
Iy /!
_ 006 |’t‘\/l‘
= Ly
" 004 LV ra
: A AN AN
\ \L\
0.02 R A VN
PN T
0

0 200000 400000 600000 800000  1x10°

Number of samples

25 /20



Markov Chain Monte Carlo (MCMC) Algorithms

Instead of generating each sample from scratch, MCMC algorithms generate a sample by making
a random change to the preceding sample. Think of an MCMC algorithm as being in a particular
current state that specifies a value for every variable and generating a next state by making
random changes to the current state.

26 /20



Gibbs Sampling

function GIBBS-ASK(X, e, bn, N) returns an estimate of P(X | e)
local variables: C, a vector of counts for each value of X, initially zero
Z., the nonevidence variables in bn
X, the current state of the network, initialized from e

initialize x with random values for the variables in Z

for k=1to N do
choose any variable Z; from Z according to any distribution p(i)
set the value of Z; in x by sampling from P(Z; | mb(Z;))
C[j] < C[j] + 1 where x; is the value of X in x

return NORMALIZE(C)



Markov Chains

0.6296 0.1164 1.0000 0.0000
/\ 0.0926 O O 0.0000 _)
& NS N o

c r c c r c

/ \ 0.4074 \ \ 0.5000 / \
02778 0.0238 0.0000  0.0000 0.5000

0.2222 . . 04762 0.5000 .
] 0.3922 / / 0.5000 /

(“‘C r \4_/_'6' -r -w \4_/_'0 -r '3
J.3856 0.1078 0.8683&/ Q).oooo 0.0000 1.0000k/




Gibbs Sampling vs. Importance Sampling

0.02 11+ 0.02 1
| I |  Likelihood weighting Likelihood weighting
|= | Gibbs sampling ———- Gibbs sampling ———-
0.015 1 M 0.015 1
i ‘|
5 I 5
= 0.01 11| I 001 !
53] | 53|
0.005 1 0.005 1
A
0 0 ’ \ f'\j\__f “"\//' \-\,.r-\\
0 200000 400000 600000 800000 1x10° 0 200000 400000 600000 800000 1x106
Number of samples Number of samples
(a) (b)

2Q /20



