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Exact Inference in Bayesian Networks (AIMA 13.3)

Most common task in probabilistic inference: compute the posterior probability of a set of query
variables given some event represented as a set of evidence variables.

Notation:
▶ Query variable: X
▶ Set of evidence variables: E = {E1, . . . , Em}
▶ Particular observed event: e
▶ Hidden (nonevidence, nonquery) variables: Y = {Y1, . . . , Yl}
▶ Typical query: Pr(X | e)

Example:
▶ X is the boolean random variable Burglary
▶ E = {JohnCalls, MaryCalls}
▶ e = {JohnCalls = true, MaryCalls = true}
▶ Y = {EarthQuake, Alarm}
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Figure 13.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary,
Earthquake, Alarm, JohnCalls, and MaryCalls, respectively.

tion 13.2.) Each row in a CPT contains the conditional probability of each node value for a
conditioning case. A conditioning case is just a possible combination of values for the parentConditioning case

nodes—a miniature possible world, if you like. Each row must sum to 1, because the entries
represent an exhaustive set of cases for the variable. For Boolean variables, once you know
that the probability of a true value is p, the probability of false must be 1� p, so we often
omit the second number, as in Figure 13.2. In general, a table for a Boolean variable with k
Boolean parents contains 2k independently specifiable probabilities. A node with no parents
has only one row, representing the prior probabilities of each possible value of the variable.

Notice that the network does not have nodes corresponding to Mary’s currently listening
to loud music or to the telephone ringing and confusing John. These factors are summarized
in the uncertainty associated with the links from Alarm to JohnCalls and MaryCalls. This
shows both laziness and ignorance in operation, as explained on page 404: it would be a lot
of work to find out why those factors would be more or less likely in any particular case, and
we have no reasonable way to obtain the relevant information anyway.

The probabilities actually summarize a potentially infinite set of circumstances in which
the alarm might fail to go off (high humidity, power failure, dead battery, cut wires, a dead
mouse stuck inside the bell, etc.) or John or Mary might fail to call and report it (out to lunch,
on vacation, temporarily deaf, passing helicopter, etc.). In this way, a small agent can cope
with a very large world, at least approximately.

13.2 The Semantics of Bayesian Networks

The syntax of a Bayes net consists of a directed acyclic graph with some local probability
information attached to each node. The semantics defines how the syntax corresponds to a
joint distribution over the variables of the network.

Assume that the Bayes net contains n variables, X1, . . . ,Xn. A generic entry in the joint
distribution is then P(X1 =x1 ^ . . .^Xn =xn), or P(x1, . . . ,xn) for short. The semantics of

Pr(Buglary | JohnCalls = true, MaryCalls = true) =< 0.284, 0.716 > .
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Inference by Enumeration

Recall that we can use the full joint distribution to answer any query:

Pr(X|e) = αPr(X, e) = α
∑

y

Pr(X, e, y) (12.9)

And that a Bayes net completely represents the full joint distribution, so we can reduce the
computation of a joint to:

Pr(x1, . . . , xn) =
n∏

i=1
Pr(xi|parents(Xi)) (13.2)

Using these two equations we can enumerate the appropriate probabilities to calculate the answer
to any probabilistic query.
▶ In particular, we can get the answer by computing sums of products of conditional

probabilities from a Bayes net.
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Example: Pr(Burglary | JohnCalls = true, MaryCalls = true).
Using abbreviations and substituting into Eq 12.9 above (e and a are hidden):

Pr(B | j, m) = αPr(B, j, m) = α
∑

e

∑
a

Pr(B, j, m, e, a)

Then we substitute Eq 13.2 for Pr(B, j, m, e, a) to get (onyly showing Burglary=true):

Pr(b | j, m) = α
∑

e

∑
a

Pr(b)Pr(e)Pr(a | b, e)Pr(j | a)Pr(m | a) (1)

= αPr(b)
∑

e

∑
a

Pr(e)Pr(a | b, e)Pr(j | a)Pr(m | a) (2)

= αPr(b)
∑

e

Pr(e)
∑

a

Pr(a | b, e)Pr(j | a)Pr(m | a) (3)

1. Substitute Eq 13.2 for Pr(B, j, m, e, a)
2. Pull out Pr(b) from summations because it doesn’t depend on the other variable and is

thus a constant in all the summation terms.
3. Pull out Pr(e) from the summation over the a values because each value of e doesn’t

depend on the other variables in the summation over the a values and is thus a constant in
the summation terms over the values of a.

Steps 2 and 3 above reduce the complexity of the computation from O(n2n) to O(2n).
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Caclulation of Pr(b | j, m)
Substiting the values from the CPTs in the Bayes net into

αPr(b)
∑

e

Pr(e)
∑

a

Pr(a | b, e)Pr(j | a)Pr(m | a)

we get the expression tree:
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Figure 13.10 The structure of the expression shown in Equation (13.5). The evaluation
proceeds top down, multiplying values along each path and summing at the “+” nodes. Notice
the repetition of the paths for j and m.

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayes net with variables vars

Q(X) a distribution over X, initially empty
for each value xi of X do

Q(xi) ENUMERATE-ALL(vars, exi )
where exi is e extended with X = xi

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY?(vars) then return 1.0
V FIRST(vars)
if V is an evidence variable with value v in e

then return P(v | parents(V )) ⇥ ENUMERATE-ALL(REST(vars), e)
else return Âv P(v | parents(V )) ⇥ ENUMERATE-ALL(REST(vars), ev)

where ev is e extended with V = v

Figure 13.11 The enumeration algorithm for exact inference in Bayes nets.
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shows both laziness and ignorance in operation, as explained on page 404: it would be a lot
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with a very large world, at least approximately.

13.2 The Semantics of Bayesian Networks

The syntax of a Bayes net consists of a directed acyclic graph with some local probability
information attached to each node. The semantics defines how the syntax corresponds to a
joint distribution over the variables of the network.

Assume that the Bayes net contains n variables, X1, . . . ,Xn. A generic entry in the joint
distribution is then P(X1 =x1 ^ . . .^Xn =xn), or P(x1, . . . ,xn) for short. The semantics of
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Enumeration Algorithm
The ENUMERATION-ASK algorithm evaluates these expression trees using depth-first,
left-to-right recursion.
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Repeated Calculations
Notice that the subexpressions for the products Pr(j | a)Pr(m | a) and Pr(j | ¬a)Pr(m | ¬a)
are computed twice, once for each value of E.
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Variable Elimination

The enumeration algorithm can be improved substantially by eliminating repeated calculations.
▶ Idea: do the calculation once and save the results for later use.
▶ This is a form of dynamic programming.
▶ Several versions of this approach; variable elimination algorithm is simplest.

Variable elimination works by evaluating expressions such as

Pr(b | j, m) = αPr(b)
∑

e

Pr(e)
∑

a

Pr(a | b, e)Pr(j | a)Pr(m | a) (13.5)

in right-to-left order (that is, bottom up in the expression tree), storing intermediate results, and
only doing summations for portions of the expression that depend on the variable.
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Example: Variable Elimination in Burglary Network

First, annotate the factors in the expression for the network:

Pr(B | j, m) = α Pr(B)︸ ︷︷ ︸
f1(B)

∑
e

Pr(e)︸ ︷︷ ︸
f2(E)

∑
a

Pr(a | B, e)︸ ︷︷ ︸
f3(A,B,E)

Pr(j | a)︸ ︷︷ ︸
f4(A)

Pr(m | a)︸ ︷︷ ︸
f5(A)

▶ Each factor is a matrix indexed by the values of its argument variables.
▶ Notice that the factors for Pr(j | a) and Pr(m|a) do not include j and m. This is because

the values of j and m (JohnCalls = true and MaryCalls − true) are fixed by the query.
So the factors are:

f1(B) =
[

Pr(b)
Pr(¬b)

]
=

[
0.001
0.999

]
f2(E) =

[
Pr(e)

Pr(¬e)

]
=

[
0.002
0.998

]

f4(A) =
[

Pr(j | a)
Pr(j | ¬a)

]
=

[
0.090
0.05

]
f5(A) =

[
Pr(m | a)

Pr(m | ¬a)

]
=

[
0.070
0.01

]

f3(A, B, E) is a little more complicated . . .
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f3(A, B, E)

Pr(B | j, m) = α Pr(B)︸ ︷︷ ︸
f1(B)

∑
e

Pr(e)︸ ︷︷ ︸
f2(E)

∑
a

Pr(a | B, e)︸ ︷︷ ︸
f3(A,B,E)

Pr(j | a)︸ ︷︷ ︸
f4(A)

Pr(m | a)︸ ︷︷ ︸
f5(A)

f3(A, B, E) is a 2 × 2 × 2 matrix (or a rank-3 tensor). Here’s one way to think about it:
▶ First index with A, yielding two 2 × 2 submatrices (one for each of the two values of A).
▶ Rows of each submatrix is indexed by B and columns by E.
▶ The entries in the submatrices are the values of Pr(A | B, E)

f
(a)
3 (B, E) =

[
Pr(a | b, e) Pr(a | b, ¬e)

Pr(a | ¬b, e) Pr(a | ¬b, ¬e)

]
=

[
0.95 0.94
0.29 0.001

]

f
(¬a)
3 (B, E) =

[
Pr(¬a | b, e) Pr(¬a | b, ¬e)

Pr(¬a | ¬b, e) Pr(¬a | ¬b, ¬e)

]
=

[
0.05 0.06
0.71 0.999

]
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in the uncertainty associated with the links from Alarm to JohnCalls and MaryCalls. This
shows both laziness and ignorance in operation, as explained on page 404: it would be a lot
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Factorized Query

From our original query:

Pr(b | j, m) = αPr(b)
∑

e

Pr(e)
∑

a

Pr(a | b, e)Pr(j | a)Pr(m | a) (13.5)

We annotated the factors:

Pr(B | j, m) = α Pr(B)︸ ︷︷ ︸
f1(B)

∑
e

Pr(e)︸ ︷︷ ︸
f2(E)

∑
a

Pr(a | B, e)︸ ︷︷ ︸
f3(A,B,E)

Pr(j | a)︸ ︷︷ ︸
f4(A)

Pr(m | a)︸ ︷︷ ︸
f5(A)

And now we substitute the factor expressions for the original expresions so we can manipulate
the factors using the pointwise product operation, denoted with × here:

Pr(B | j, m) = αf1(B) ×
∑

e

f2(E) ×
∑

a

f3(A, B, E) × f4(A) × f5(A)

Now we are ready to evaluate the expression . . .
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Expression Evaluation

First, sum out A from the pointwise product of f3(A, B, E), f4(A), and f5(A) yielding a new
2 × 2 factor, f6(B, E):

f6(B, E) =
∑

a

f3(A, B, E) × f4(A) × f5(A)

= (f3(a, B, E) × f4(a) × f5(a)) + (f3(¬a, B, E) × f4(¬a) × f5(¬a))

Now the query expression is Pr(B | j, m) = αf1(B) ×
∑

e f2(E) × f6(B, E)
Next, sum out E from the product of f2(E) and f6(B, E), yielding a new factor f7(B):

f7(B) =
∑

e

f2(E) × f6(B, E)

= f2(e) × f6(B, e) + f2(¬e) × f6(B, ¬e)

Which leaves our final form of the query: Pr(B | j, m) = αf1(B) × f7(B)
This expression can be evaluated by taking the pointwise product and normalizing the result.
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Operations on Factors

Two basic operations in variable elimination:
1. the pointwise product operation, and
2. summing out hidden variables from products of factors.
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Pointwise Product Example

The pointwise product of two factors f and g yields a new factor h whose variables are the
union of the variables in f and g and whose elements are given by the product of the
corresponding elements in the two factors.
If we have X, Y, Z boolean variables, then here’s the result of pointwise product
f(X, Y ) × g(Y, Z) = h(X, Y, Z):

Section 13.3 Exact Inference in Bayesian Networks 449

X Y f(X ,Y ) Y Z g(Y,Z) X Y Z h(X ,Y,Z)

t t .3 t t .2 t t t .3⇥ .2= .06
t f .7 t f .8 t t f .3⇥ .8= .24
f t .9 f t .6 t f t .7⇥ .6= .42
f f .1 f f .4 t f f .7⇥ .4= .28

f t t .9⇥ .2= .18
f t f .9⇥ .8= .72
f f t .1⇥ .6= .06
f f f .1⇥ .4= .04

Figure 13.12 Illustrating pointwise multiplication: f(X ,Y )⇥g(Y,Z) = h(X ,Y,Z).

Examining this sequence, we see that two basic computational operations are required: point-
wise product of a pair of factors, and summing out a variable from a product of factors. The
next section describes each of these operations.

Operations on factors

The pointwise product of two factors f and g yields a new factor h whose variables are the
union of the variables in f and g and whose elements are given by the product of the corre-
sponding elements in the two factors. Suppose the two factors have variables Y1, . . . ,Yk in
common. Then we have

f(X1 . . .Xj,Y1 . . .Yk)⇥g(Y1 . . .Yk,Z1, . . .Z`) = h(X1 . . .Xj,Y1 . . .Yk,Z1 . . .Z`)

If all the variables are binary, then f and g have 2 j+k and 2k+` entries, respectively, and the
pointwise product has 2 j+k+` entries. For example, given two factors f(X ,Y ) and g(Y,Z),
the pointwise product f⇥g=h(X ,Y,Z) has 21+1+1 =8 entries, as illustrated in Figure 13.12.
Notice that the factor resulting from a pointwise product can contain more variables than any
of the factors being multiplied and that the size of a factor is exponential in the number of
variables. This is where both space and time complexity arise in the variable elimination
algorithm.

Summing out a variable from a product of factors is done by adding up the submatrices
formed by fixing the variable to each of its values in turn. For example, to sum out X from
h(X ,Y,Z), we write

h2(Y,Z) = Â
x

h(X ,Y,Z) = h(x,Y,Z)+h(¬x,Y,Z)

=

✓
.06 .24
.42 .28

◆
+

✓
.18 .72
.06 .04

◆
=

✓
.24 .96
.48 .32

◆
.

The only trick is to notice that any factor that does not depend on the variable to be summed
out can be moved outside the summation. For example, to sum out X from the product of f
and g, we can move g outside the summation:

Â
x

f(X ,Y )⇥g(Y,Z) = g(Y,Z)⇥Â
x

f(X ,Y ) .
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Summing out Variables

Summing out a variable from a product of factors is done by adding up the submatrices formed
by fixing the variable to each of its values in turn. For example, to sum out X from h(X, Y, Z),
we write

h2(Y, Z) =
∑

x

h(X, Y, Z)

= h(x, Y, Z) + h(¬x, Y, Z)

=
[
.06 .24
.42 .28

]
+

[
.18 .72
.06 .04

]
=

[
.24 .96
.48 .32

]
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Variable Elimination Algorithm
With these two basic operations, we can implement the variable elimination algorithm:

450 Chapter 13 Probabilistic Reasoning

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables vars

factors [ ]
for each V in ORDER(vars) do

factors [MAKE-FACTOR(V, e)] + factors
if V is a hidden variable then factors SUM-OUT(V , factors)

return NORMALIZE(POINTWISE-PRODUCT(factors))

Figure 13.13 The variable elimination algorithm for exact inference in Bayes nets.

This is potentially much more efficient than computing the larger pointwise product h first
and then summing X out from that.

Notice that matrices are not multiplied until we need to sum out a variable from the
accumulated product. At that point, we multiply just those matrices that include the variable
to be summed out. Given functions for pointwise product and summing out, the variable
elimination algorithm itself can be written quite simply, as shown in Figure 13.13.

Variable ordering and variable relevance

The algorithm in Figure 13.13 includes an unspecified ORDER function to choose an ordering
for the variables. Every choice of ordering yields a valid algorithm, but different orderings
cause different intermediate factors to be generated during the calculation. For example, in
the calculation shown previously, we eliminated A before E; if we do it the other way, the
calculation becomes

P(B | j,m) = ↵ f1(B)⇥Â
a

f4(A)⇥ f5(A)⇥Â
e

f2(E)⇥ f3(A,B,E) ,

during which a new factor f6(A,B) will be generated.
In general, the time and space requirements of variable elimination are dominated by

the size of the largest factor constructed during the operation of the algorithm. This in turn
is determined by the order of elimination of variables and by the structure of the network.
It turns out to be intractable to determine the optimal ordering, but several good heuristics
are available. One fairly effective method is a greedy one: eliminate whichever variable
minimizes the size of the next factor to be constructed.

Let us consider one more query: P(JohnCalls |Burglary= true). As usual (see Equa-
tion (13.5)), the first step is to write out the nested summation:

P(J |b) = ↵P(b)Â
e

P(e)Â
a

P(a |b,e)P(J |a)Â
m

P(m |a) .

Evaluating this expression from right to left, we notice something interesting: Âm P(m |a) is
equal to 1 by definition! Hence, there was no need to include it in the first place; the vari-
able M is irrelevant to this query. Another way of saying this is that the result of the query
P(JohnCalls |Burglary= true) is unchanged if we remove MaryCalls from the network alto-
gether. In general, we can remove any leaf node that is not a query variable or an evidence

Notes about the order function:
▶ Any ordering works, some orderings lead to more efficient algorithms.
▶ No tractable algorithm for determining optimal ordering.
▶ One heuristic: eliminate whichever variable minimizes the size of the next factor to be

contructed.
▶ General rule: every variable that is not an ancestor of a query variable or evidence variable is

irrelevant to the query.
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Notice that the Alarm Bayes net is singly connected, a.k.a., a polytree:
▶ there is at mose one undirected path between any two nodes in the network.
432 Chapter 13 Probabilistic Reasoning
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Figure 13.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary,
Earthquake, Alarm, JohnCalls, and MaryCalls, respectively.

tion 13.2.) Each row in a CPT contains the conditional probability of each node value for a
conditioning case. A conditioning case is just a possible combination of values for the parentConditioning case

nodes—a miniature possible world, if you like. Each row must sum to 1, because the entries
represent an exhaustive set of cases for the variable. For Boolean variables, once you know
that the probability of a true value is p, the probability of false must be 1� p, so we often
omit the second number, as in Figure 13.2. In general, a table for a Boolean variable with k
Boolean parents contains 2k independently specifiable probabilities. A node with no parents
has only one row, representing the prior probabilities of each possible value of the variable.

Notice that the network does not have nodes corresponding to Mary’s currently listening
to loud music or to the telephone ringing and confusing John. These factors are summarized
in the uncertainty associated with the links from Alarm to JohnCalls and MaryCalls. This
shows both laziness and ignorance in operation, as explained on page 404: it would be a lot
of work to find out why those factors would be more or less likely in any particular case, and
we have no reasonable way to obtain the relevant information anyway.

The probabilities actually summarize a potentially infinite set of circumstances in which
the alarm might fail to go off (high humidity, power failure, dead battery, cut wires, a dead
mouse stuck inside the bell, etc.) or John or Mary might fail to call and report it (out to lunch,
on vacation, temporarily deaf, passing helicopter, etc.). In this way, a small agent can cope
with a very large world, at least approximately.

13.2 The Semantics of Bayesian Networks

The syntax of a Bayes net consists of a directed acyclic graph with some local probability
information attached to each node. The semantics defines how the syntax corresponds to a
joint distribution over the variables of the network.

Assume that the Bayes net contains n variables, X1, . . . ,Xn. A generic entry in the joint
distribution is then P(X1 =x1 ^ . . .^Xn =xn), or P(x1, . . . ,xn) for short. The semantics of

The time and space complexity of polytrees is linear in the size of the network.
▶ Size of network is defined as number of CPT entries.
▶ If |parents(Xi)| ≤ c, ∀i ∈ n for some constant c and number of nodes n, then complexity

is also linear in number of nodes.
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Complexity of Exact Inference in Multiply-connected Networks

Now consider multiply-connected such as the car insurance network:Section 13.2 The Semantics of Bayesian Networks 443

Figure 13.9 A Bayesian network for evaluating car insurance applications.

causal structure of the domain and gives an accurate, well-calibrated distribution over the
output variables given the evidence available from the application form.3 The Bayes net will
include hidden variables that are neither input nor output variables, but are essential for Hidden variable

structuring the network so that it is reasonably sparse with a manageable number of parame-
ters. The hidden variables are shaded brown in Figure 13.9.

The claims to be paid out—shaded lavender in Figure 13.9—are of three kinds: the
MedicalCost for any injuries sustained by the applicant; the LiabilityCost for lawsuits filed by
other parties against the applicant and the company; and the PropertyCost for vehicle damage
to either party and vehicle loss by theft. The application form asks for the following input
information (the light blue nodes in Figure 13.9):

• About the applicant: Age; YearsLicensed—how long since a driving license was first
obtained; DrivingRecord—some summary, perhaps based on “points,” of recent acci-
dents and traffic violations; and (for students) a GoodStudent indicator for a grade-point
average of 3.0 (B) on a 4-point scale.

• About the vehicle: the MakeModel and VehicleYear; whether it has an Airbag; and some
summary of SafetyFeatures such as anti-lock braking and collision warning.

• About the driving situation: the annual Mileage driven and how securely the vehicle is
Garaged, if at all.

3 The network shown in Figure 13.9 is not in actual use, but its structure has been vetted with insurance experts.
In practice, the information requested on application forms varies by company and jurisdiction—for example,
some ask for Gender—and the model could certainly be made more detailed and sophisticated.

▶ Variable elimination can have exponential worst-case time and space complexity in
multiply-connected networks.

▶ Since inference in Bayes nets includes inference in propositional logic as a special case,
Bayes net inference is NP-hard.
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Figure 13.14 Bayes net encoding of the 3-CNF sentence

(W _X _Y )^ (¬W _Y _Z)^ (X _Y _¬Z) .

problem is #P-complete (“number-P complete”), this means that Bayes net inference is #P-
hard—that is, strictly harder than NP-complete problems.

There is a close connection between the complexity of Bayes net inference and the com-
plexity of constraint satisfaction problems (CSPs). As we discussed in Chapter 5, the diffi-
culty of solving a discrete CSP is related to how “treelike” its constraint graph is. Measures
such as tree width, which bound the complexity of solving a CSP, can also be applied directly
to Bayes nets. Moreover, the variable elimination algorithm can be generalized to solve CSPs
as well as Bayes nets.

As well as reducing satisfiability problems to Bayes net inference, we can reduce Bayes
net inference to satisfiability, which allows us to take advantage of the powerful machinery
developed for SAT-solving (see Chapter 7). In this case, the reduction is to a particular
form of SAT solving called weighted model counting (WMC). Regular model countingWeighted model

counting

counts the number of satisfying assignments for a SAT expression; WMC sums the total
weight of those satisfying assignments—where, in this application, the weight is essentially
the product of the conditional probabilities for each variable assignment given its parents.
(See Exercise 13.WMCX for details.) Partly because SAT-solving technology has been so
well optimized for large-scale applications, Bayes net inference via WMC is competitive
with and sometimes superior to other exact algorithms on networks with large tree width.

13.3.4 Clustering algorithms

The variable elimination algorithm is simple and efficient for answering individual queries. If
we want to compute posterior probabilities for all the variables in a network, however, it can
be less efficient. For example, in a polytree network, one would need to issue O(n) queries
costing O(n) each, for a total of O(n2) time. Using clustering algorithms (also known asClustering

join tree algorithms), the time can be reduced to O(n). For this reason, these algorithms areJoin tree

widely used in commercial Bayes net tools.
The basic idea of clustering is to join individual nodes of the network to form cluster

nodes in such a way that the resulting network is a polytree. For example, the multiply
connected network shown in Figure 13.15(a) can be converted into a polytree by combining
the Sprinkler and Rain node into a cluster node called Sprinkler+Rain, as shown in Fig-
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aka join trees.

Section 13.4 Approximate Inference for Bayesian Networks 453
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Figure 13.15 (a) A multiply connected network describing Mary’s daily lawn routine: each
morning, she checks the weather; if it’s cloudy, she usually doesn’t turn on the sprinkler;
if the sprinkler is on, or if it rains during the day, the grass will be wet. Thus, Cloudy
affects WetGrass via two different causal pathways. (b) A clustered equivalent of the multiply
connected network.

ure 13.15(b). The two Boolean nodes are replaced by a meganode that takes on four possible Meganode

values: tt, t f , f t, and f f . The meganode has only one parent, the Boolean variable Cloudy,
so there are two conditioning cases. Although this example doesn’t show it, the process of
clustering often produces meganodes that share some variables.

Once the network is in polytree form, a special-purpose inference algorithm is required,
because ordinary inference methods cannot handle meganodes that share variables with each
other. Essentially, the algorithm is a form of constraint propagation (see Chapter 5) where the
constraints ensure that neighboring meganodes agree on the posterior probability of any vari-
ables that they have in common. With careful bookkeeping, this algorithm is able to compute
posterior probabilities for all the nonevidence nodes in the network in time linear in the size
of the clustered network. However, the NP-hardness of the problem has not disappeared: if a
network requires exponential time and space with variable elimination, then the CPTs in the
clustered network will necessarily be exponentially large.

13.4 Approximate Inference for Bayesian Networks

Given the intractability of exact inference in large networks, we will now consider approxi-
mate inference methods. This section describes randomized sampling algorithms, also called
Monte Carlo algorithms, that provide approximate answers whose accuracy depends on Monte Carlo

the number of samples generated. They work by generating random events based on the
probabilities in the Bayes net and counting up the different answers found in those random
events. With enough samples, we can get arbitrarily close to recovering the true probability
distribution—provided the Bayes net has no deterministic conditional distributions.
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Monte Carlo algorithms, of which simulated annealing (page 133) is an example, are used
in many branches of science to estimate quantities that are difficult to calculate exactly. In this
section, we are interested in sampling applied to the computation of posterior probabilities
in Bayes nets. We describe two families of algorithms: direct sampling and Markov chain
sampling. Several other approaches for approximate inference are mentioned in the notes at
the end of the chapter.

13.4.1 Direct sampling methods

The primitive element in any sampling algorithm is the generation of samples from a known
probability distribution. For example, an unbiased coin can be thought of as a random vari-
able Coin with values hheads, tailsi and a prior distribution P(Coin) = h0.5,0.5i. Sampling
from this distribution is exactly like flipping the coin: with probability 0.5 it will return heads,
and with probability 0.5 it will return tails. Given a source of random numbers r uniformly
distributed in the range [0,1], it is a simple matter to sample any distribution on a single
variable, whether discrete or continuous. This is done by constructing the cumulative distri-
bution for the variable and returning the first value whose cumulative probability exceeds r
(see Exercise 13.PRSA).

We begin with a random sampling process for a Bayes net that has no evidence associated
with it. The idea is to sample each variable in turn, in topological order. The probability
distribution from which the value is sampled is conditioned on the values already assigned to
the variable’s parents. (Because we sample in topological order, the parents are guaranteed
to have values already.) This algorithm is shown in Figure 13.16. Applying it to the network
in Figure 13.15(a) with the ordering Cloudy, Sprinkler, Rain, WetGrass, we might produce a
random event as follows:

1. Sample from P(Cloudy) = h0.5,0.5i, value is true.
2. Sample from P(Sprinkler |Cloudy= true) = h0.1,0.9i, value is false.
3. Sample from P(Rain |Cloudy= true) = h0.8,0.2i, value is true.
4. Sample from P(WetGrass |Sprinkler= false,Rain= true) = h0.9,0.1i, value is true.

In this case, PRIOR-SAMPLE returns the event [true, false, true, true].
It is easy to see that PRIOR-SAMPLE generates samples from the prior joint distribution

specified by the network. First, let SPS(x1, . . . ,xn) be the probability that a specific event is

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn, a Bayesian network specifying joint distribution P(X1, . . . ,Xn)

x an event with n elements
for each variable Xi in X1, . . . ,Xn do

x[i] a random sample from P(Xi | parents(Xi))
return x

Figure 13.16 A sampling algorithm that generates events from a Bayesian network. Each
variable is sampled according to the conditional distribution given the values already sampled
for the variable’s parents.
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function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network
N, the total number of samples to be generated

local variables: C, a vector of counts for each value of X, initially zero

for j = 1 to N do
x PRIOR-SAMPLE(bn)
if x is consistent with e then

C[j] C[j]+1 where x j is the value of X in x
return NORMALIZE(C)

Figure 13.17 The rejection-sampling algorithm for answering queries given evidence in a
Bayesian network.

From Equation (13.7), this becomes

P̂(X |e)⇡ P(X ,e)
P(e)

= P(X |e) .

That is, rejection sampling produces a consistent estimate of the true probability.
Continuing with our example from Figure 13.15(a), let us assume that we wish to estimate

P(Rain |Sprinkler= true), using 100 samples. Of the 100 that we generate, suppose that 73
have Sprinkler= false and are rejected, while 27 have Sprinkler= true; of the 27, 8 have
Rain= true and 19 have Rain= false. Hence,

P(Rain |Sprinkler= true)⇡ NORMALIZE(h8,19i) = h0.296,0.704i .
The true answer is h0.3,0.7i. As more samples are collected, the estimate will converge to
the true answer. The standard deviation of the error in each probability will be proportional
to 1/

p
n, where n is the number of samples used in the estimate.

Now we know that rejection sampling converges to the correct answer, the next ques-
tion is, how fast does that happen? More precisely, how many samples are required before
we know that the resulting estimates are close to the correct answers with high probability?
Whereas the complexity of exact algorithms depends to a large extent on the topology of the
network—trees are easy, densely connected networks are hard—the complexity of rejection
sampling depends primarily on the fraction of samples that are accepted. This fraction is
exactly equal to the prior probability of the evidence, P(e). Unfortunately, for complex prob-
lems with many evidence variables, this fraction is vanishingly small. When applied to the
discrete version of the car insurance network in Figure 13.9, the fraction of samples consis-
tent with a typical evidence case sampled from the network itself is usually between one in a
thousand and one in ten thousand. Convergence is extremely slow (see Figure 13.19 below).

We expect the fraction of samples consistent with the evidence e to drop exponentially as
the number of evidence variables grows, so the procedure is unusable for complex problems.
It also has difficulties with continuous-valued evidence variables, because the probability of
producing a sample consistent with such evidence is zero (if it is really continuous-valued) or
infinitesimal (if it is merely a finite-precision floating-point number).
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function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network specifying joint distribution P(X1, . . . ,Xn)
N, the total number of samples to be generated

local variables: W, a vector of weighted counts for each value of X, initially zero

for j = 1 to N do
x, w WEIGHTED-SAMPLE(bn, e)
W[j] W[j]+w where x j is the value of X in x

return NORMALIZE(W)

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

w 1; x an event with n elements, with values fixed from e
for i = 1 to n do

if Xi is an evidence variable with value xi j in e
then w w⇥ P(Xi = xi j | parents(Xi))
else x[i] a random sample from P(Xi | parents(Xi))

return x, w

Figure 13.18 The likelihood-weighting algorithm for inference in Bayesian networks. In
WEIGHTED-SAMPLE, each nonevidence variable is sampled according to the conditional
distribution given the values already sampled for the variable’s parents, while a weight is
accumulated based on the likelihood for each evidence variable.

because each variable is sampled conditioned on its parents. In order to complete the algo-
rithm, we need to know how to compute the weight for each sample generated from QWS.
According to the general scheme for importance sampling, the weight should be

w(z) = P(z |e)/QWS(z) = ↵P(z,e)/QWS(z)
where the normalizing factor ↵=1/P(e) is the same for all samples. Now z and e together
cover all the variables in the Bayes net, so P(z,e) is just the product of all the conditional prob-
abilities (Equation (13.2) page 433); and we can write this as the product of the conditional
probabilities for the nonevidence variables times the product of the conditional probabilities
for the evidence variables:

w(z) = ↵
P(z,e)
QWS(z)

= ↵
’l

i=1 P(zi | parents(Zi)) ’m
i=1 P(ei | parents(Ei))

’l
i=1 P(zi | parents(Zi))

= ↵
m

’
i=1

P(ei | parents(Ei)) . (13.9)

Thus the weight is the product of the conditional probabilities for the evidence variables
given their parents. (Probabilities of evidence are generally called likelihoods, hence the
name.) The weight calculation is implemented incrementally in WEIGHTED-SAMPLE, mul-
tiplying by the conditional probability each time an evidence variable is encountered. The
normalization is done at the end before the query result is returned.

Let us apply the algorithm to the network shown in Figure 13.15(a), with the query
P(Rain |Cloudy= true,WetGrass= true) and the ordering Cloudy, Sprinkler, Rain, WetGrass.
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Figure 13.19 Performance of rejection sampling and likelihood weighting on the insurance
network. The x-axis shows the number of samples generated and the y-axis shows the maxi-
mum absolute error in any of the probability values for a query on PropertyCost.

The term Markov chain refers to a random process that generates a sequence of states.Markov chain

(Markov chains also figure prominently in Chapters 14 and 16; the simulated annealing algo-
rithm in Chapter 4 and the WALKSAT algorithm in Chapter 7 are also members of the MCMC
family.) We begin by describing a particular form of MCMC called Gibbs sampling, whichGibbs sampling

is especially well suited for Bayes nets. We then describe the more general Metropolis–
Hastings algorithm, which allows much greater flexibility in generating samples.Metropolis–Hastings

Gibbs sampling in Bayesian networks

The Gibbs sampling algorithm for Bayesian networks starts with an arbitrary state (with the
evidence variables fixed at their observed values) and generates a next state by randomly
sampling a value for one of the nonevidence variables Xi. Recall from page 437 that Xi is in-
dependent of all other variables given its Markov blanket (its parents, children, and children’s
other parents); therefore, Gibbs sampling for Xi means sampling conditioned on the current
values of the variables in its Markov blanket. The algorithm wanders randomly around the
state space—the space of possible complete assignments—flipping one variable at a time, but
keeping the evidence variables fixed. The complete algorithm is shown in Figure 13.20.

Consider the query P(Rain |Sprinkler= true,WetGrass= true) for the network in Fig-
ure 13.15(a). The evidence variables Sprinkler and WetGrass are fixed to their observed
values (both true), and the nonevidence variables Cloudy and Rain are initialized randomly
to, say, true and false respectively. Thus, the initial state is [true, true, false, true], where we
have marked the fixed evidence values in bold. Now the nonevidence variables Zi are sam-
pled repeatedly in some random order according to a probability distribution ⇢(i) for choosing
variables. For example:

1. Cloudy is chosen and then sampled, given the current values of its Markov blanket: in
this case, we sample from P(Cloudy |Sprinkler= true,Rain= false). Suppose the result
is Cloudy= false. Then the new current state is [false, true, false, true].
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Markov Chain Monte Carlo (MCMC) Algorithms

Instead of generating each sample from scratch, MCMC algorithms generate a sample by making
a random change to the preceding sample. Think of an MCMC algorithm as being in a particular
current state that specifies a value for every variable and generating a next state by making
random changes to the current state.
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function GIBBS-ASK(X, e, bn, N) returns an estimate of P(X |e)
local variables: C, a vector of counts for each value of X, initially zero

Z, the nonevidence variables in bn
x, the current state of the network, initialized from e

initialize x with random values for the variables in Z
for k = 1 to N do

choose any variable Zi from Z according to any distribution ⇢(i)
set the value of Zi in x by sampling from P(Zi |mb(Zi))
C[j] C[j]+1 where x j is the value of X in x

return NORMALIZE(C)

Figure 13.20 The Gibbs sampling algorithm for approximate inference in Bayes nets; this
version chooses variables at random, but cycling through the variables but also works.

2. Rain is chosen and then sampled, given the current values of its Markov blanket: in
this case, we sample from P(Rain |Cloudy= false,Sprinkler= true,WetGrass= true).
Suppose this yields Rain= true. The new current state is [false, true, true, true].

The one remaining detail concerns the method of calculating the Markov blanket distribu-
tion P(Xi |mb(Xi)), where mb(Xi) denotes the values of the variables in Xi’s Markov blan-
ket, MB(Xi). Fortunately, this does not involve any complex inference. As shown in Exer-
cise 13.MARB, the distribution is given by

P(xi |mb(Xi)) = ↵P(xi | parents(Xi)) ’
Yj2Children(Xi)

P(y j | parents(Yj)) . (13.10)

In other words, for each value xi, the probability is given by multiplying probabilities from the
CPTs of Xi and its children. For example, in the first sampling step shown above, we sampled
from P(Cloudy |Sprinkler= true,Rain= false). By Equation (13.10), and abbreviating the
variable names, we have

P(c |s,¬r) = ↵P(c)P(s |c)P(¬r |c) = ↵0.5 ·0.1 ·0.2

P(¬c |s,¬r) = ↵P(¬c)P(s |¬c)P(¬r |¬c) = ↵0.5 ·0.5 ·0.8 ,

so the sampling distribution is ↵h0.001,0.020i ⇡ h0.048,0.952i.
Figure 13.21(a) shows the complete Markov chain for the case where variables are chosen

uniformly, i.e., ⇢(Cloudy)=⇢(Rain)=0.5. The algorithm is simply wandering around in this
graph, following links with the stated probabilities. Each state visited during this process is
a sample that contributes to the estimate for the query variable Rain. If the process visits 20
states where Rain is true and 60 states where Rain is false, then the answer to the query is
NORMALIZE(h20,60i) = h0.25,0.75i.

Analysis of Markov chains

We have said that Gibbs sampling works by wandering randomly around the state space to
generate samples. To explain why Gibbs sampling works correctly—that is, why its estimates
converge to correct values in the limit—we will need some careful analysis. (This section is
somewhat mathematical and can be skipped on first reading.)
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Figure 13.21 (a) The states and transition probabilities of the Markov chain for the query
P(Rain |Sprinkler= true,WetGrass= true). Note the self-loops: the state stays the same
when either variable is chosen and then resamples the same value it already has. (b) The
transition probabilities when the CPT for Rain constrains it to have the same value as Cloudy.

We begin with some of the basic concepts for analyzing Markov chains in general. Any
such chain is defined by its initial state and its transition kernel k(x! x0)—the probabilityTransition kernel

of a transition to state x0 starting from state x. Now suppose that we run the Markov chain
for t steps, and let ⇡t(x) be the probability that the system is in state x at time t. Similarly,
let ⇡t+1(x0) be the probability of being in state x0 at time t +1. Given ⇡t(x), we can calculate
⇡t+1(x0) by summing, for all states x the system could be in at time t, the probability of being
in x times the probability of making the transition to x0:

⇡t+1(x0) = Â
x
⇡t(x)k(x! x0) .

We say that the chain has reached its stationary distribution if ⇡t =⇡t+1. Let us call thisStationary
distribution

stationary distribution ⇡; its defining equation is therefore

⇡(x0) = Â
x
⇡(x)k(x! x0) for all x0 . (13.11)

Provided the transition kernel k is ergodic—that is, every state is reachable from every otherErgodic

and there are no strictly periodic cycles—there is exactly one distribution ⇡ satisfying this
equation for any given k.

Equation (13.11) can be read as saying that the expected “outflow” from each state (i.e.,
its current “population”) is equal to the expected “inflow” from all the states. One obvious
way to satisfy this relationship is if the expected flow between any pair of states is the same
in both directions; that is,

⇡(x)k(x! x0) = ⇡(x0)k(x0 ! x) for all x, x0 . (13.12)

When these equations hold, we say that k(x! x0) is in detailed balance with ⇡(x). OneDetailed balance

special case is the self-loop x = x0, i.e., a transition from a state to itself. In that case, the
detailed balance condition becomes ⇡(x)k(x! x)=⇡(x)k(x! x) which is of course trivially
true for any stationary distribution ⇡ and any transition kernel k.
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Figure 13.22 Performance of Gibbs sampling compared to likelihood weighting on the car
insurance network: (a) for the standard query on PropertyCost, and (b) for the case where
the output variables are observed and Age is the query variable.

the CPTs do not contain probabilities of 0 or 1. Reachability comes from the fact that we can
convert one state into another by changing one variable at a time, and the absence of periodic
cycles comes from the fact that every state has a self-loop with nonzero probability. Hence,
under the stated conditions, k is ergodic, which means that the samples generated by Gibbs
sampling will eventually be drawn from the true posterior distribution.

Complexity of Gibbs sampling

First, the good news: each Gibbs sampling step involves calculating the Markov blanket dis-
tribution for the chosen variable Xi, which requires a number of multiplications proportional
to the number of Xi’s children and the size of Xi’s range. This is important because it means
that the work required to generate each sample is independent of the size of the network.I

Now, the not necessarily bad news: the complexity of Gibbs sampling is much harder
to analyze than that of rejection sampling and likelihood weighting. The first thing to notice
is that Gibbs sampling, unlike likelihood weighting, does pay attention to downstream evi-
dence. Information propagates from evidence nodes in all directions: first, any neighbors of
the evidence nodes sample values that reflect the evidence in those nodes; then their neigh-
bors, and so on. Thus, we expect Gibbs sampling to outperform likelihood weighting when
evidence is mostly downstream; and indeed, this is borne out in Figure 13.22.

The rate of convergence for Gibbs sampling—the mixing rate of the Markov chain de-Mixing rate

fined by the algorithm—depends strongly on the quantitative properties of the conditional
distributions in the network. To see this, consider what happens in Figure 13.15(a) as the
CPT for Rain becomes deterministic: it rains if and only if it is cloudy. In that case, the true
posterior distribution for the query P(Rain |sprinkler,wetGrass) is roughly h0.18,0.82i but
Gibbs sampling will never reach this value. The problem is that the only two joint states
for Cloudy and Rain that have non-zero probability are [true, true] and [false, false]. Starting
in [true, true], the chain can never reach [false, false] because transitions to the intermediate
states have probability zero (see Figure 13.21(b)). So, if the process starts in [true, true] it
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