
Artificial Intelligence
Nondeterministic Search

Christopher Simpkins

1 / 25

Nondeterministic Search (AIMA 4.3-4.5)

So far we’ve learned about search in fully observable, deterministic, known environments. In this
lesson we consider:
▶ environments with nondeterministic actions,
▶ partially observable environments, and
▶ unknown environments.

2 / 25

States in the Vacuum World

Let’s return to the vacuum world, whose states are:

Section 4.3 Search with Nondeterministic Actions 141

1 2

87

5 6

3 4

Figure 4.9 The eight possible states of the vacuum world; states 7 and 8 are goal states.

that returns a single outcome state, we use a RESULTS function that returns a set of possible
outcome states. For example, in the erratic vacuum world, the Suck action in state 1 cleans
up either just the current location, or both locations:

RESULTS(1, Suck) = {5,7}
If we start in state 1, no single sequence of actions solves the problem, but the following
conditional plan does:

[Suck, if State=5 then [Right,Suck] else []] . (4.3)

Here we see that a conditional plan can contain if–then–else steps; this means that solutions
are trees rather than sequences. Here the conditional in the if statement tests to see what the
current state is; this is something the agent will be able to observe at runtime, but doesn’t
know at planning time. Alternatively, we could have had a formulation that tests the percept
rather than the state. Many problems in the real, physical world are contingency problems,
because exact prediction of the future is impossible. For this reason, many people keep their
eyes open while walking around.

4.3.2 AND–OR search trees

How do we find these contingent solutions to nondeterministic problems? As in Chapter 3,
we begin by constructing search trees, but here the trees have a different character. In a de-
terministic environment, the only branching is introduced by the agent’s own choices in each
state: I can do this action or that action. We call these nodes OR nodes. In the vacuum world, Or node

for example, at an OR node the agent chooses Left or Right or Suck. In a nondeterministic
environment, branching is also introduced by the environment’s choice of outcome for each
action. We call these nodes AND nodes. For example, the Suck action in state 1 results in the And node

belief state {5,7}, so the agent would need to find a plan for state 5 and for state 7. These
two kinds of nodes alternate, leading to an AND–OR tree as illustrated in Figure 4.10. And–or tree

3 / 25

Nondeterministic Actions: The Erratic Vacuum World

In the erratic vacuum world, the Suck action works as follows:
▶ When applied to a dirty square the action cleans the square and sometimes cleans up dirt in

an adjacent square, too.
▶ When applied to a clean square the action sometimes deposits dirt on the carpet.

So the result of each action is a set, e.g.:

Results(1, Suck) = {5, 7}

That set of states that the agent believes is possible, {5, 7}, is called a belief state.

4 / 25

A Factored Representation

Let’s depart from the book for a few slides and, instead of using an index into a vector of states,
create a factored representation for clarity.
▶ left-condition ∈ {CLEAN, DIRTY}
▶ right-condition ∈ {CLEAN, DIRTY}
▶ vacuum-location ∈ {LEFT, RIGHT}
▶ State representation: <vacuum-location, left-condition, right-condition>

So
Results(1,Suck)= {5, 7}

becomes
Results(<LEFT, DIRTY, DIRTY>, Suck)= {<LEFT, CLEAN, DIRTY>, <LEFT, CLEAN, CLEAN>}

Note that the factored representation is easier for us to read (don’t have to look up states in a
table), but the search algorithms we’re considering here treat these states as atomic.

5 / 25

Conditional Plans

A conditional plan, a.k.a. contingency plan, is a plan that specifies action selection based on the
observed state while executing the plan.
▶ In a fully-observable, deterministic world contingencies are not necessary – a plan is just a

sequence of actions.
▶ We need conditional/contingency plans in environments that are partially observable or

nondeterministic.
Consider the start state, <LEFT, DIRTY, DIRTY>. Due to the environment’s nondeterminism, not
possible to find a sequence of actions guaranteed to solve the problem. But this simple
conditional plan does:

[Suck, if State == <LEFT, CLEAN, DIRTY> then [Right, Suck] else []]

6 / 25

AND-OR Search Trees

▶ Branch on agent’s action: OR nodes,
shown as states.

▶ Branch on environment’s outcome: AND
nodes, shown as circles with arc linking
branches to possible outcome states (when
> 1).

▶ A plan includes actions for OR nodes, and
conditional actions for AND nodes that
contain more than one state.

Trace this conditional plan through the tree on
the right.
[Suck,

if State == <LEFT, CLEAN, DIRTY> then [Right, Suck]

else []]

142 Chapter 4 Search in Complex Environments

LeftSuck

RightSuck

RightSuck

6

GOAL

8

GOAL

7

1

2 5

1

LOOP

5

LOOP

5

LOOP

Left Suck

1

LOOP GOAL

8 4

Figure 4.10 The first two levels of the search tree for the erratic vacuum world. State nodes
are OR nodes where some action must be chosen. At the AND nodes, shown as circles, every
outcome must be handled, as indicated by the arc linking the outgoing branches. The solution
found is shown in bold lines.

A solution for an AND–OR search problem is a subtree of the complete search tree that
(1) has a goal node at every leaf, (2) specifies one action at each of its OR nodes, and (3)
includes every outcome branch at each of its AND nodes. The solution is shown in bold lines
in the figure; it corresponds to the plan given in Equation (4.3).

Figure 4.11 gives a recursive, depth-first algorithm for AND–OR graph search. One key
aspect of the algorithm is the way in which it deals with cycles, which often arise in nonde-
terministic problems (e.g., if an action sometimes has no effect or if an unintended effect can
be corrected). If the current state is identical to a state on the path from the root, then it re-
turns with failure. This doesn’t mean that there is no solution from the current state; it simply
means that if there is a noncyclic solution, it must be reachable from the earlier incarnation of
the current state, so the new incarnation can be discarded. With this check, we ensure that the
algorithm terminates in every finite state space, because every path must reach a goal, a dead
end, or a repeated state. Notice that the algorithm does not check whether the current state is
a repetition of a state on some other path from the root, which is important for efficiency.

AND–OR graphs can be explored either breadth-first or best-first. The concept of a heuris-
tic function must be modified to estimate the cost of a contingent solution rather than a se-
quence, but the notion of admissibility carries over and there is an analog of the A⇤ algorithm
for finding optimal solutions. (See the bibliographical notes at the end of the chapter.)

7 / 25

Slippery Vacuum World

▶ Like deterministic vacuum world, but a
movement action may result in no
movement.

Results(<LEFT, DIRTY, DIRTY>, Right)=

{<LEFT, DIRTY, DIRTY>, <RIGHT, DIRTY, DIRTY>}

▶ Do deal with nondetermnistic movements
we need cyclic plans. Use a while
construct:

[Suck, while State == <LEFT, CLEAN, DIRTY> do Right,

Suck]

144 Chapter 4 Search in Complex Environments

Suck Right

6

1

2 5

Right

Figure 4.12 Part of the search graph for a slippery vacuum world, where we have shown
(some) cycles explicitly. All solutions for this problem are cyclic plans because there is no
way to move reliably.

4.4 Search in Partially Observable Environments

We now turn to the problem of partial observability, where the agent’s percepts are not enough
to pin down the exact state. That means that some of the agent’s actions will be aimed at
reducing uncertainty about the current state.

4.4.1 Searching with no observation

When the agent’s percepts provide no information at all, we have what is called a sensorlessSensorless

problem (or a conformant problem). At first, you might think the sensorless agent has noConformant

hope of solving a problem if it has no idea what state it starts in, but sensorless solutions are
surprisingly common and useful, primarily because they don’t rely on sensors working prop-
erly. In manufacturing systems, for example, many ingenious methods have been developed
for orienting parts correctly from an unknown initial position by using a sequence of actions
with no sensing at all. Sometimes a sensorless plan is better even when a conditional plan
with sensing is available. For example, doctors often prescribe a broad-spectrum antibiotic
rather than using the conditional plan of doing a blood test, then waiting for the results to
come back, and then prescribing a more specific antibiotic. The sensorless plan saves time
and money, and avoids the risk of the infection worsening before the test results are available.

Consider a sensorless version of the (deterministic) vacuum world. Assume that the agent
knows the geography of its world, but not its own location or the distribution of dirt. In that
case, its initial belief state is {1,2,3,4,5,6,7,8} (see Figure 4.9). Now, if the agent moves
Right it will be in one of the states {2,4,6,8}—the agent has gained information without
perceiving anything! After [Right,Suck] the agent will always end up in one of the states
{4,8}. Finally, after [Right,Suck,Left,Suck] the agent is guaranteed to reach the goal state 7,
no matter what the start state. We say that the agent can coerce the world into state 7.Coercion

8 / 25

States in the Vacuum World

Recall the states of the vacuum world:

Section 4.3 Search with Nondeterministic Actions 141

1 2

87

5 6

3 4

Figure 4.9 The eight possible states of the vacuum world; states 7 and 8 are goal states.

that returns a single outcome state, we use a RESULTS function that returns a set of possible
outcome states. For example, in the erratic vacuum world, the Suck action in state 1 cleans
up either just the current location, or both locations:

RESULTS(1, Suck) = {5,7}
If we start in state 1, no single sequence of actions solves the problem, but the following
conditional plan does:

[Suck, if State=5 then [Right,Suck] else []] . (4.3)

Here we see that a conditional plan can contain if–then–else steps; this means that solutions
are trees rather than sequences. Here the conditional in the if statement tests to see what the
current state is; this is something the agent will be able to observe at runtime, but doesn’t
know at planning time. Alternatively, we could have had a formulation that tests the percept
rather than the state. Many problems in the real, physical world are contingency problems,
because exact prediction of the future is impossible. For this reason, many people keep their
eyes open while walking around.

4.3.2 AND–OR search trees

How do we find these contingent solutions to nondeterministic problems? As in Chapter 3,
we begin by constructing search trees, but here the trees have a different character. In a de-
terministic environment, the only branching is introduced by the agent’s own choices in each
state: I can do this action or that action. We call these nodes OR nodes. In the vacuum world, Or node

for example, at an OR node the agent chooses Left or Right or Suck. In a nondeterministic
environment, branching is also introduced by the environment’s choice of outcome for each
action. We call these nodes AND nodes. For example, the Suck action in state 1 results in the And node

belief state {5,7}, so the agent would need to find a plan for state 5 and for state 7. These
two kinds of nodes alternate, leading to an AND–OR tree as illustrated in Figure 4.10. And–or tree

9 / 25

Search in Sensorless Environments

Now let’s turn to uncertainty in the state observations, first with a sensorless world.
Sensorless, a.k.a. conformant, problems are surprisingly common.
▶ Manufacturing: orienting parts regardless of initial position.
▶ Medicine: applying broadly applicable treatments without running tests.

Consider a sensorless version of the (deterministic) vacuum world. Assume that the agent knows
the geography of its world, but not its own location or the distribution of dirt.
Given an initial belief state is {1,2,3,4,5,6,7,8}.
▶ After [Right], belief state is {2,4,6,8}
▶ After [Right,Suck] belief state is {4,8}.
▶ After [Right,Suck,Left,Suck], belief state is {7}.

We say that the agent can coerce the world into state 7.

10 / 25

States in Sensorless Environments

Instead of creating new algorithms, we transform the original problem into a belief state problem.
The original problem, P , has components ActionsP , ResultP etc., and the belief-state problem
has the following components:
▶ States: The belief-state space contains every possible subset of the physical states. If P

has N states, then the belief-state problem has 2N belief states, although many of those
may be unreachable from the initial state (see next slide).

▶ Initial state: Typically the belief state consisting of all states in P, although in some cases
the agent will have more knowledge than this.

11 / 25

Reachable States in Sensorless Vacuum World
Only 12 reachable belief states out of 28 = 256 possible belief states.

Section 4.4 Search in Partially Observable Environments 147

L

R

S

L

R

S

L R

S

LR

S

L

R

S

L R

S
L

R

S

11 3

5 7

2 4

6 8

2 3

4 5 6

7 8

4 5

7 8

5 3

7

6 4

8

4

8

5

7

6

8

8 7

3

7

Figure 4.14 The reachable portion of the belief-state space for the deterministic, sensorless
vacuum world. Each rectangular box corresponds to a single belief state. At any given point,
the agent has a belief state but does not know which physical state it is in. The initial belief
state (complete ignorance) is the top center box.

say, “Not in the rightmost column,” and so on. Chapter 7 explains how to do this in a formal
representation scheme.

Another approach is to avoid the standard search algorithms, which treat belief states as
black boxes just like any other problem state. Instead, we can look inside the belief states
and develop incremental belief-state search algorithms that build up the solution one phys- Incremental

belief-state search
ical state at a time. For example, in the sensorless vacuum world, the initial belief state is
{1,2,3,4,5,6,7,8}, and we have to find an action sequence that works in all 8 states. We can
do this by first finding a solution that works for state 1; then we check if it works for state 2;
if not, go back and find a different solution for state 1, and so on.

Just as an AND–OR search has to find a solution for every branch at an AND node, this
algorithm has to find a solution for every state in the belief state; the difference is that AND–
OR search can find a different solution for each branch, whereas an incremental belief-state
search has to find one solution that works for all the states.

The main advantage of the incremental approach is that it is typically able to detect failure
quickly—when a belief state is unsolvable, it is usually the case that a small subset of the

Section 4.3 Search with Nondeterministic Actions 141

1 2

87

5 6

3 4

Figure 4.9 The eight possible states of the vacuum world; states 7 and 8 are goal states.

that returns a single outcome state, we use a RESULTS function that returns a set of possible
outcome states. For example, in the erratic vacuum world, the Suck action in state 1 cleans
up either just the current location, or both locations:

RESULTS(1, Suck) = {5,7}
If we start in state 1, no single sequence of actions solves the problem, but the following
conditional plan does:

[Suck, if State=5 then [Right,Suck] else []] . (4.3)

Here we see that a conditional plan can contain if–then–else steps; this means that solutions
are trees rather than sequences. Here the conditional in the if statement tests to see what the
current state is; this is something the agent will be able to observe at runtime, but doesn’t
know at planning time. Alternatively, we could have had a formulation that tests the percept
rather than the state. Many problems in the real, physical world are contingency problems,
because exact prediction of the future is impossible. For this reason, many people keep their
eyes open while walking around.

4.3.2 AND–OR search trees

How do we find these contingent solutions to nondeterministic problems? As in Chapter 3,
we begin by constructing search trees, but here the trees have a different character. In a de-
terministic environment, the only branching is introduced by the agent’s own choices in each
state: I can do this action or that action. We call these nodes OR nodes. In the vacuum world, Or node

for example, at an OR node the agent chooses Left or Right or Suck. In a nondeterministic
environment, branching is also introduced by the environment’s choice of outcome for each
action. We call these nodes AND nodes. For example, the Suck action in state 1 results in the And node

belief state {5,7}, so the agent would need to find a plan for state 5 and for state 7. These
two kinds of nodes alternate, leading to an AND–OR tree as illustrated in Figure 4.10. And–or tree

12 / 25

Actions in Sensorless Environments

▶ Actions: If b = {s1, s2}, but ActionsP (s1) ̸= ActionsP (s2); then agent can’t be sure
which actions are legal. If illegal actions have no effect, safe to take union of all actions in
the current belief state b:

Actions(b) =
⋃
s∈b

ActionsP (s)

If an illegal action might lead to catastrophe, safer to allow only the intersection – set of actions
legal in all states. For the vacuum world, every state has the same legal actions, so both
methods give the same result.

13 / 25

Transition Model in Sensorless Environments

▶ Transition model: For deterministic actions, the new belief state has one result state for
each of the current possible states (although some result states may be the same):

b′ = Result(b, a) = {s′ : s′ = ResultP (s, a) and s ∈ b}

With nondeterminism, the new belief state consists of all the possible results of applying the
action to any of the states in the current belief state:

b′ = Results(b, a) = {s′ : s′ ∈ ResultsP (s, a)ands ∈ b}

=
⋃
s∈b

ResultsP (s, a)

The size of b′ will be the same or smaller than b for deterministic actions, but may be larger than
b with nondeterministic actions.

14 / 25

Predicting Belief States in Sensorless Vacuum World146 Chapter 4 Search in Complex Environments

2

4

1

3

2

4

1

3

1

3

(b)(a)

Figure 4.13 (a) Predicting the next belief state for the sensorless vacuum world with the
deterministic action, Right. (b) Prediction for the same belief state and action in the slippery
version of the sensorless vacuum world.

several values. (This gives rise to a new class of problems, which we explore in Exer-
cise 4.MVAL.) For now we assume that the cost of an action is the same in all states and
so can be transferred directly from the underlying physical problem.

Figure 4.14 shows the reachable belief-state space for the deterministic, sensorless vac-
uum world. There are only 12 reachable belief states out of 28 =256 possible belief states.

The preceding definitions enable the automatic construction of the belief-state problem
formulation from the definition of the underlying physical problem. Once this is done, we
can solve sensorless problems with any of the ordinary search algorithms of Chapter 3.

In ordinary graph search, newly reached states are tested to see if they were previously
reached. This works for belief states, too; for example, in Figure 4.14, the action sequence
[Suck,Left,Suck] starting at the initial state reaches the same belief state as [Right,Left,Suck],
namely, {5,7}. Now, consider the belief state reached by [Left], namely, {1,3,5,7}. Obvi-
ously, this is not identical to {5,7}, but it is a superset. We can discard (prune) any such
superset belief state. Why? Because a solution from {1,3,5,7} must be a solution for each
of the individual states 1, 3, 5, and 7, and thus it is a solution for any combination of these
individual states, such as {5,7}; therefore we don’t need to try to solve {1,3,5,7}, we can
concentrate on trying to solve the strictly easier belief state {5,7}.

Conversely, if {1,3,5,7} has already been generated and found to be solvable, then any
subset, such as {5,7}, is guaranteed to be solvable. (If I have a solution that works when I’m
very confused about what state I’m in, it will still work when I’m less confused.) This extra
level of pruning may dramatically improve the efficiency of sensorless problem solving.

Even with this improvement, however, sensorless problem-solving as we have described
it is seldom feasible in practice. One issue is the vastness of the belief-state space—we saw in
the previous chapter that often a search space of size N is too large, and now we have search
spaces of size 2N . Furthermore, each element of the search space is a set of up to N elements.
For large N, we won’t be able to represent even a single belief state without running out of
memory space.

One solution is to represent the belief state by some more compact description. In En-
glish, we could say the agent knows “Nothing” in the initial state; after moving Left, we could

Apply the action to all states in b to get b′.
▶ (a) Predicting the next belief state with the deterministic action, Right.
▶ (b) Prediction for the same belief state and action in the slippery sensorless vacuum world.

15 / 25

Goals and Action Costs in Sensorless Environments

▶ Goal test:
▶ The agent possibly achieves the goal if ∃s ∈ b : IsGoalP (s).
▶ The agent necessarily achieves the goal if ∀s ∈ b : IsGoalP (s).
▶ We aim to necessarily achieve the goal.

▶ Action cost: If the same action can have different costs in different states, then the cost of
taking an action in a given belief state could be one of several values. For now we assume
that the cost of an action is the same in all states and so can be transferred directly from
the underlying physical problem.

16 / 25

Search in Partially Observable Environments

Many problems cannot be solved without sensing, e.g., sensorless 8-puzzle is impossible.
We can solve 8-puzzles if we can see just the upper-left corner square by moving each tile in turn
into the observable square and keeping track of its location from then on.
For a partially observable problem, the problem specification will specify a Percept(s) function
that returns the percept received by the agent in a given state.
▶ For nondeterministic sensing, Percepts(s) = {s}s∈S

▶ For fully observable problems, ∀s, Percept(s) = s
▶ For sensorless problems Percept(s) = null.

17 / 25

Local-Sensing Vacuum World

The agent has a position sensor that yields the percept L
in the left square, and R in the right square, and a dirt
sensor that yields Dirty when the current square is dirty
and Clean when it is clean – but does not sense the other
square. This is nondeterministic sensing becuase the same
percept can match more than one state:
▶ The PERCEPT in State 1 is [L,Dirty].
▶ State 3 will also produce [L,Dirty].
▶ Hence, the initial belief state will be {1,3}:

▶ P ercepts(1) = {1, 3}
How do we algorithmically get that belief state . . .

Section 4.3 Search with Nondeterministic Actions 141

1 2

87

5 6

3 4

Figure 4.9 The eight possible states of the vacuum world; states 7 and 8 are goal states.

that returns a single outcome state, we use a RESULTS function that returns a set of possible
outcome states. For example, in the erratic vacuum world, the Suck action in state 1 cleans
up either just the current location, or both locations:

RESULTS(1, Suck) = {5,7}
If we start in state 1, no single sequence of actions solves the problem, but the following
conditional plan does:

[Suck, if State=5 then [Right,Suck] else []] . (4.3)

Here we see that a conditional plan can contain if–then–else steps; this means that solutions
are trees rather than sequences. Here the conditional in the if statement tests to see what the
current state is; this is something the agent will be able to observe at runtime, but doesn’t
know at planning time. Alternatively, we could have had a formulation that tests the percept
rather than the state. Many problems in the real, physical world are contingency problems,
because exact prediction of the future is impossible. For this reason, many people keep their
eyes open while walking around.

4.3.2 AND–OR search trees

How do we find these contingent solutions to nondeterministic problems? As in Chapter 3,
we begin by constructing search trees, but here the trees have a different character. In a de-
terministic environment, the only branching is introduced by the agent’s own choices in each
state: I can do this action or that action. We call these nodes OR nodes. In the vacuum world, Or node

for example, at an OR node the agent chooses Left or Right or Suck. In a nondeterministic
environment, branching is also introduced by the environment’s choice of outcome for each
action. We call these nodes AND nodes. For example, the Suck action in state 1 results in the And node

belief state {5,7}, so the agent would need to find a plan for state 5 and for state 7. These
two kinds of nodes alternate, leading to an AND–OR tree as illustrated in Figure 4.10. And–or tree

18 / 25

Transition Model in Partially Observable Environments
After we apply an action in a given belief state, we can think of the transition model between
belief states for partially observable problems as occurring in three stages, as depicted in the next
slide:
▶ The prediction stage computes the belief state resulting from the action, Result(b,a),

exactly as we did with sensorless problems. To emphasize that this is a prediction, we use
the notation b̂ = Result(b, a), where the hat over the b means “estimated,” and we also
use Predict(b,a) as a synonym for Result(b,a).

▶ The possible percepts stage computes the set of percepts that could be observed in the
predicted belief state (using the letter o for observation):

PossiblePercepts(b̂) = {o : o = Percept(s) and s ∈ b̂}

▶ The update stage computes, for each possible percept, the belief state that would result
from the percept. The updated belief state bo is the set of states in b that could have
produced the percept:

bo = Update(b̂, o) = {s : o = Percept(s) and s ∈ b̂}

19 / 25

Planning Time State Estimation

The agent needs to deal with possible percepts at planning time, because it won’t know the
actual percepts until it executes the plan.
▶ Nondeterminism in the physical environment can enlarge the belief state in the prediction

stage, but each updated belief state bo can be no larger than the predicted belief state b̂;
observations can only help reduce uncertainty.

▶ For deterministic sensing, the belief states for the different possible percepts will be disjoint,
forming a partition of the original predicted belief state.

Putting the three stages from previous slide together, we obtain the possible belief states
resulting from a given action and the subsequent possible percepts:

Results(b, a) = {bo : bo = Update(Predict(b, a), o) and o ∈ PossiblePercepts(Predict(b, a))}.

20 / 25

State Transitions with Local SensingSection 4.4 Search in Partially Observable Environments 149

2

4

4

1

2

4

1

3

2

1

3 3

(b)

(a)

4

2

1

3

Right

[L,Dirty]

[R,Dirty]

[R,Clean]

Right
[R,Dirty]

[R,Clean]

Figure 4.15 Two examples of transitions in local-sensing vacuum worlds. (a) In the deter-
ministic world, Right is applied in the initial belief state, resulting in a new predicted belief
state with two possible physical states; for those states, the possible percepts are [R,Dirty]
and [R,Clean], leading to two belief states, each of which is a singleton. (b) In the slippery
world, Right is applied in the initial belief state, giving a new belief state with four physical
states; for those states, the possible percepts are [L,Dirty], [R,Dirty], and [R,Clean], leading
to three belief states as shown.

RightSuck

[L,Clean] [R,Clean][R,Dirty]

Figure 4.16 The first level of the AND–OR search tree for a problem in the local-sensing
vacuum world; Suck is the first action in the solution.

1. Predict b̂ = Result(b, a)

2. PossiblePercepts(b̂) =
{o : o = Percept(s) and s ∈ b̂}

3. bo = Update(b̂, o) =
{s : o = Percept(s) and s ∈ b̂}

Final column on left shows input to Update step,
which will then compute the final bo based on
percept/observation o.
▶ (a) Deterministic world.
▶ (b) Slippery world. Input to Update step are

3 belief states, each of which is no larger
than the belief state from which they
were produced.

21 / 25

Local Sensing And-Or Trees
Given previous formulation of nondeterministic belief state problems, AND-OR can be used.
With initial percept [L, Dirty]:

Section 4.4 Search in Partially Observable Environments 149

2

4

4

1

2

4

1

3

2

1

3 3

(b)

(a)

4

2

1

3

Right

[L,Dirty]

[R,Dirty]

[R,Clean]

Right
[R,Dirty]

[R,Clean]

Figure 4.15 Two examples of transitions in local-sensing vacuum worlds. (a) In the deter-
ministic world, Right is applied in the initial belief state, resulting in a new predicted belief
state with two possible physical states; for those states, the possible percepts are [R,Dirty]
and [R,Clean], leading to two belief states, each of which is a singleton. (b) In the slippery
world, Right is applied in the initial belief state, giving a new belief state with four physical
states; for those states, the possible percepts are [L,Dirty], [R,Dirty], and [R,Clean], leading
to three belief states as shown.

RightSuck

[L,Clean] [R,Clean][R,Dirty]

Figure 4.16 The first level of the AND–OR search tree for a problem in the local-sensing
vacuum world; Suck is the first action in the solution.

Section 4.3 Search with Nondeterministic Actions 141

1 2

87

5 6

3 4

Figure 4.9 The eight possible states of the vacuum world; states 7 and 8 are goal states.

that returns a single outcome state, we use a RESULTS function that returns a set of possible
outcome states. For example, in the erratic vacuum world, the Suck action in state 1 cleans
up either just the current location, or both locations:

RESULTS(1, Suck) = {5,7}
If we start in state 1, no single sequence of actions solves the problem, but the following
conditional plan does:

[Suck, if State=5 then [Right,Suck] else []] . (4.3)

Here we see that a conditional plan can contain if–then–else steps; this means that solutions
are trees rather than sequences. Here the conditional in the if statement tests to see what the
current state is; this is something the agent will be able to observe at runtime, but doesn’t
know at planning time. Alternatively, we could have had a formulation that tests the percept
rather than the state. Many problems in the real, physical world are contingency problems,
because exact prediction of the future is impossible. For this reason, many people keep their
eyes open while walking around.

4.3.2 AND–OR search trees

How do we find these contingent solutions to nondeterministic problems? As in Chapter 3,
we begin by constructing search trees, but here the trees have a different character. In a de-
terministic environment, the only branching is introduced by the agent’s own choices in each
state: I can do this action or that action. We call these nodes OR nodes. In the vacuum world, Or node

for example, at an OR node the agent chooses Left or Right or Suck. In a nondeterministic
environment, branching is also introduced by the environment’s choice of outcome for each
action. We call these nodes AND nodes. For example, the Suck action in state 1 results in the And node

belief state {5,7}, so the agent would need to find a plan for state 5 and for state 7. These
two kinds of nodes alternate, leading to an AND–OR tree as illustrated in Figure 4.10. And–or tree

A partially observable problem can be solved by the AND-OR algorithm.

[Suck, Right, if state = {6} then Suck else []]

22 / 25

Belief State Maintenance in Partially Observable Environments
Kindergarten world (square not being actively cleaned can become dirty):

Section 4.4 Search in Partially Observable Environments 151

7

5

6

2 1

3

6

4

8

2 [R,Dirty]Right[L,Clean]

7

5

Suck

Figure 4.17 Two prediction–update cycles of belief-state maintenance in the kindergarten
vacuum world with local sensing.

stochastic, continuous-state environments with the tools of probability theory, as explained in
Chapter 14.

In this section we will show an example in a discrete environment with deterministic
sensors and nondeterministic actions. The example concerns a robot with a particular state
estimation task called localization: working out where it is, given a map of the world and Localization

a sequence of percepts and actions. Our robot is placed in the maze-like environment of
Figure 4.18. The robot is equipped with four sonar sensors that tell whether there is an
obstacle—the outer wall or a dark shaded square in the figure—in each of the four compass
directions. The percept is in the form of a bit vector, one bit for each of the directions north,
east, south, and west in that order, so 1011 means there are obstacles to the north, south, and
west, but not east.

We assume that the sensors give perfectly correct data, and that the robot has a correct
map of the environment. But unfortunately, the robot’s navigational system is broken, so
when it executes a Right action, it moves randomly to one of the adjacent squares. The
robot’s task is to determine its current location.

Suppose the robot has just been switched on, and it does not know where it is—its initial
belief state b consists of the set of all locations. The robot then receives the percept 1011
and does an update using the equation bo =UPDATE(1011), yielding the 4 locations shown
in Figure 4.18(a). You can inspect the maze to see that those are the only four locations that
yield the percept 1011.

Next the robot executes a Right action, but the result is nondeterministic. The new belief
state, ba =PREDICT(bo,Right), contains all the locations that are one step away from the lo-
cations in bo. When the second percept, 1010, arrives, the robot does UPDATE(ba,1010) and
finds that the belief state has collapsed down to the single location shown in Figure 4.18(b).
That’s the only location that could be the result of

UPDATE(PREDICT(UPDATE(b,1011),Right),1010) .

With nondeterministic actions the PREDICT step grows the belief state, but the UPDATE step
shrinks it back down—as long as the percepts provide some useful identifying information.
Sometimes the percepts don’t help much for localization: If there were one or more long east-
west corridors, then a robot could receive a long sequence of 1010 percepts, but never know

▶ Most real-world environments partially observable. Belief state maintenance is core task.
▶ Also known as monitoring, filtering, and state estimation.

b′ = Update(Predict(b, a), o).

Equation above is called a recursive state estimator because it computes the new belief state
from the previous one rather than by examining the entire percept sequence.

23 / 25

Robot Localization

Localization: typical robot state estimation problem in which the robot works out where it is,
given a map of the world and a sequence of percepts and actions.

152 Chapter 4 Search in Complex Environments

(a) Possible locations of robot after E1 = 1011

(b) Possible locations of robot after E1 = 1011, E2 = 1010

Figure 4.18 Possible positions of the robot, �, (a) after one observation, E1 =1011, and
(b) after moving one square and making a second observation, E2 =1010. When sensors are
noiseless and the transition model is accurate, there is only one possible location for the robot
consistent with this sequence of two observations.

where in the corridor(s) it was. But for environments with reasonable variation in geography,
localization often converges quickly to a single point, even when actions are nondeterministic.

What happens if the sensors are faulty? If we can reason only with Boolean logic, then we
have to treat every sensor bit as being either correct or incorrect, which is the same as having
no perceptual information at all. But we will see that probabilistic reasoning (Chapter 12),
allows us to extract useful information from a faulty sensor as long as it is wrong less than
half the time.

4.5 Online Search Agents and Unknown Environments

So far we have concentrated on agents that use offline search algorithms. They computeO✏ine search

a complete solution before taking their first action. In contrast, an online search8 agentOnline search

interleaves computation and action: first it takes an action, then it observes the environment
and computes the next action. Online search is a good idea in dynamic or semi-dynamic
environments, where there is a penalty for sitting around and computing too long. Online

8 The term “online” here refers to algorithms that must process input as it is received rather than waiting for the
entire input data set to become available. This usage of “online” is unrelated to the concept of “having an Internet
connection.”

24 / 25

Online Seach

▶ Agents we’ve studied so far use offline search algorithms, which compute a complete
solution before taking first action.

▶ Online search agents interleave computation and action.
▶ Good in dynamic environments where computation time must be limited so environment

doesn’t change while the agent computes an action.
▶ Good in nondeterministic environments so agent can focus on contingencies that actually arise.
▶ In unkown environments, agent must act in order to learn about the environment.
▶ Tradeoff: more planning can prevent ending up in dead ends.

Canonical example of online search: mapping problem. Agent placed in unknown environment
and must explore to build a map.
▶ The problem of doing localization and mapping at the same time is called SLAM:

Simultaneous Localization and Mapping.

25 / 25

