Artificial Intelligence

Nondeterministic Search

Christopher Simpkins

Nondeterministic Search (AIMA 4.3-4.5)

So far we've learned about search in fully observable, deterministic, known environments. In this
lesson we consider:

» environments with nondeterministic actions,
» partially observable environments, and
» unknown environments.

2 /95

States in the Vacuum World

Let's return to the vacuum world, whose states are:

1 d’ 2

09R | 9K

()

s =M 6
=A

0
[0}
0

0
)

(058?;,

080 080
NBUNEENRN

Nondeterministic Actions: The Erratic Vacuum World

In the erratic vacuum world, the Suck action works as follows:

» When applied to a dirty square the action cleans the square and sometimes cleans up dirt in
an adjacent square, too.
» When applied to a clean square the action sometimes deposits dirt on the carpet.

So the result of each action is a set, e.g.:

Results(1, Suck) = {5, 7}

That set of states that the agent believes is possible, {5, 7}, is called a belief state.

A /OB

A Factored Representation

Let's depart from the book for a few slides and, instead of using an index into a vector of states,
create a factored representation for clarity.

» left-condition € {CLEAN, DIRTY}
» right-condition € {CLEAN, DIRTY}
» vacuum-location € {LEFT, RIGHT}
4 State representation: <vacuum-location, left-condition, right-condition>

So
Results(1,Suck)= {5, 7}
becomes
Results(<LEFT, DIRTY, DIRTY>, Suck)= {<LEFT, CLEAN, DIRTY>, <LEFT, CLEAN, CLEAN>}

Note that the factored representation is easier for us to read (don't have to look up states in a
table), but the search algorithms we're considering here treat these states as atomic.

E /98

Conditional Plans

A conditional plan, a.k.a. contingency plan, is a plan that specifies action selection based on the

observed state while executing the plan.
» In a fully-observable, deterministic world contingencies are not necessary — a plan is just a

sequence of actions.
» We need conditional /contingency plans in environments that are partially observable or

nondeterministic.
Consider the start state, <LerT, DIRTY, DIRTY>. Due to the environment’s nondeterminism, not

possible to find a sequence of actions guaranteed to solve the problem. But this simple

conditional plan does:

[Suck, if State == <LEFT, CLEAN, DIRTY> then [Right, Suck] else []]

6 /08

AND-OR Search Trees

» Branch on agent's action: OR nodes,
shown as states.

» Branch on environment’s outcome: AND
nodes, shown as circles with arc linking
branches to possible outcome states (when
> 1).

» A plan includes actions for OR nodes, and
conditional actions for AND nodes that
contain more than one state.

Trace this conditional plan through the tree on
the right.

[Suck,

if State == <LEFT, CLEAN, DIRTY> then [Right, Suck]

else [1]

3]]
Suck Right
7 5 8- [
GOAL Suck Right Left Suck
i I 5 =] o[[=]
LOOP Loop S LOOP GOAL

7 /95

Slippery Vacuum World

» Like deterministic vacuum world, but a
movement action may result in no
movement.

Results (KLEFT, DIRTY, DIRTY>, Right)=
{<LEFT, DIRTY, DIRTY>, <RIGHT, DIRTY, DIRTY>}

» Do deal with nondetermnistic movements
we need cyclic plans. Use a while
construct:

[Suck, while State == <LEFT, CLEAN, DIRTY> do Right,
Suck]

Suck Right

Byl

Q /95

States in the Vacuum World

Recall the states of the vacuum world:

. [

(=3 o
098 | 9K

()
0

; [=A
=A

080 080
NBUNEENE N

Search in Sensorless Environments

Now let's turn to uncertainty in the state observations, first with a sensorless world.
Sensorless, a.k.a. conformant, problems are surprisingly common.

» Manufacturing: orienting parts regardless of initial position.
» Medicine: applying broadly applicable treatments without running tests.

Consider a sensorless version of the (deterministic) vacuum world. Assume that the agent knows
the geography of its world, but not its own location or the distribution of dirt.

Given an initial belief state is {1,2,3,4,5,6,7,8}.

> After [Right], belief state is {2,4,6,8}
> After [Right,Suck] belief state is {4,8}.
> After [Right,Suck,Left,Suck], belief state is {7}.

We say that the agent can coerce the world into state 7.

10 /978

States in Sensorless Environments

Instead of creating new algorithms, we transform the original problem into a belief state problem.

The original problem, P, has components Actionsp, Resultp etc., and the belief-state problem
has the following components:

» States: The belief-state space contains every possible subset of the physical states. If P
has N states, then the belief-state problem has 2V belief states, although many of those
may be unreachable from the initial state (see next slide).

> Initial state: Typically the belief state consisting of all states in P, although in some cases
the agent will have more knowledge than this.

11 /28

Reachable States in Sensorless Vacuum World

Only 12 reachable belief states out of 2% = 256 possible belief states.

2@'&?‘1%‘;{‘
gls A

19 /98

R
—— 6

3zt
o st

A
3

o8 |o%

38 o

@ai‘;d sﬂdas'ﬁ
=l

=
o

i
i

L
Ei

o[

4

ERMEIR

| ®
[[

Y]

6

L
R

L
—1 4

= =
s[=]_][

i
" |

Mﬁ
ik
il

i
N[T]

Actions in Sensorless Environments

> Actions: If b= {s1,s2}, but Actionsp(s1) # Actionsp(sz); then agent can't be sure
which actions are legal. If illegal actions have no effect, safe to take union of all actions in
the current belief state b:

Actions(b) = U Actionsp(s)
s€b

If an illegal action might lead to catastrophe, safer to allow only the intersection — set of actions
legal in all states. For the vacuum world, every state has the same legal actions, so both
methods give the same result.

12 /928

Transition Model in Sensorless Environments

» Transition model: For deterministic actions, the new belief state has one result state for
each of the current possible states (although some result states may be the same):

b' = Result(b,a) = {s' : s = Resultp(s,a) and s € b}

With nondeterminism, the new belief state consists of all the possible results of applying the
action to any of the states in the current belief state:

V' = Results(b,a) = {s' : s’ € Resultsp(s,a)ands € b}
= U Resultsp(s,a)

seb

The size of b’ will be the same or smaller than b for deterministic actions, but may be larger than
b with nondeterministic actions.

KENNESAW STATE
UNIVERSITY

14 /D08

Predicting Belief States in Sensorless Vacuum World

(a) (b)

Apply the action to all states in b to get b'.

» (a) Predicting the next belief state with the deterministic action, Right.
» (b) Prediction for the same belief state and action in the slippery sensorless vacuum world.

KENNESAW STATE
UNIVERSITY

15 /98

Goals and Action Costs in Sensorless Environments

» Goal test:

» The agent possibly achieves the goal if 3s € b: IsGoalp(s).
» The agent necessarily achieves the goal if Vs € b: IsGoalp(s).
» We aim to necessarily achieve the goal.

» Action cost: If the same action can have different costs in different states, then the cost of
taking an action in a given belief state could be one of several values. For now we assume
that the cost of an action is the same in all states and so can be transferred directly from
the underlying physical problem.

16 /D8

Search in Partially Observable Environments

Many problems cannot be solved without sensing, e.g., sensorless 8-puzzle is impossible.

We can solve 8-puzzles if we can see just the upper-left corner square by moving each tile in turn
into the observable square and keeping track of its location from then on.

For a partially observable problem, the problem specification will specify a Percept(s) function
that returns the percept received by the agent in a given state.

» For nondeterministic sensing, Percepts(s) = {s}ses
» For fully observable problems, Vs, Percept(s) = s
» For sensorless problems Percept(s) = null.

17 /928

Local-Sensing Vacuum World

The agent has a position sensor that yields the percept L

0
%0
0

in the left square, and R in the right square, and a dirt 1 d‘ 2
sensor that yields Dirty when the current square is dirty 3R |58 LS
and Clean when it is clean — but does not sense the other

square. This is nondeterministic sensing becuase the same 3 =A

percept can match more than one state:
» The PERCEPT in State 1 is [L,Dirty].
> State 3 will also produce [L,Dirty].
> Hence, the initial belief state will be {1,3}:
> Percepts(l) = {1,3}
How do we algorithmically get that belief state . ..

&
00
%

A A

1Q /928

Transition Model in Partially Observable Environments

After we apply an action in a given belief state, we can think of the transition model between

belief states for partially observable problems as occurring in three stages, as depicted in the next
slide:

» The prediction stage computes the belief state resulting from the action, Result(b,a),
exactly as we did with sensorless problems. To emphasize that this is a prediction, we use
the notation b = Result(b, a), where the hat over the b means “estimated,” and we also
use Predict(b,a) as a synonym for Result(b,a).

» The possible percepts stage computes the set of percepts that could be observed in the
predicted belief state (using the letter o for observation):

PossiblePercepts(b) = {0 : 0 = Percept(s) and s € b}

» The update stage computes, for each possible percept, the belief state that would result
from the percept. The updated belief state b, is the set of states in b that could have
produced the percept:

b, = U]odate(l;7 0) = {s: 0= Percept(s) and s € B}

19 /28

Planning Time State Estimation

The agent needs to deal with possible percepts at planning time, because it won't know the
actual percepts until it executes the plan.

» Nondeterminism in the physical environment can enlarge the belief state in the prediction
stage, but each updated belief state b, can be no larger than the predicted belief state b;
observations can only help reduce uncertainty.

» For deterministic sensing, the belief states for the different possible percepts will be disjoint,
forming a partition of the original predicted belief state.

Putting the three stages from previous slide together, we obtain the possible belief states
resulting from a given action and the subsequent possible percepts:

Results(b,a) = {b, : b, = Update(Predict(b,a),0) and o € PossiblePercepts(Predict(b,a))}.

20 /08

State Transitions with Local Sensing

1. Predict b = Result(b,a)

~

2. PossiblePercepts(b) =

(@
{o0: 0= Percept(s) and s € b}

3. b, = Update(b, 0) =
{s: 0= Percept(s) and s € b}

Final column on left shows input to Update step,
which will then compute the final b, based on
percept/observation o.
» (a) Deterministic world.
» (b) Slippery world. Input to Update step are
3 belief states, each of which is no larger
than the belief state from which they
were prOduced- % KENNESAW STATE

(b)

NIVERSITY

21 /98

Local Sensing And-Or Trees

Given previous formulation of nondeterministic belief state problems, AND-OR can be used.
With initial percept [L, Dirty]:

0 000
k ° K

ff%"

080

%

(S}

Oq
o
080
2%

[L,Clean]

A partially observable problem can be solved by the AND-OR algorithm.

[Suck, Right, if state = {6} then Suck else []] % .

29 /95

Belief State Maintenance in Partially Observable Environments

Kindergarten world (square not being actively cleaned can become dirty):

Suck [L,Clean]

| |
2| x|
E

s

» Most real-world environments partially observable. Belief state maintenance is core task.
> Also known as monitoring, filtering, and state estimation.

= Update(Predict(b,a),0).

Equation above is called a recursive state estimator because it computes the new belief state

from the previous one rather than by examining the entire percept sequence. % CRNGER A

22 /95

Robot Localization

Localization: typical robot state estimation problem in which the robot works out where it is,
given a map of the world and a sequence of percepts and actions.

0]

i BaEEE CBE B
ENENNENENE
oo RN |

OEE B BER
Ccl HEA CHaE aRaEn

(a) Possible locations of robot after E; = 1011

0]

1 HEEEE OiE B
ENENNENENE

OhE B BER

(b) Possible locations of robot after E; = 1011, E; = 1010

Online Seach

» Agents we've studied so far use offline search algorithms, which compute a complete
solution before taking first action.
» Online search agents interleave computation and action.

» Good in dynamic environments where computation time must be limited so environment
doesn’t change while the agent computes an action.
» Good in nondeterministic environments so agent can focus on contingencies that actually arise.
» In unkown environments, agent must act in order to learn about the environment.
» Tradeoff: more planning can prevent ending up in dead ends.
Canonical example of online search: mapping problem. Agent placed in unknown environment
and must explore to build a map.
» The problem of doing localization and mapping at the same time is called SLAM:
Simultaneous Localization and Mapping.

M /95

