Artificial Intelligence
Markov Decision Processes (AIMA 17)

Christopher Simpkins

Kennesaw State University

1/26

Sequential Decisions

In sequential decision problems, the agent's utility depends on a sequence of decisions.

Sequential decision problems incorporate utilities, uncertainty, and sensing, and include search and
planning problems as special cases.

» Markov decision processes (MDPs)
> k-Armed bandits
» Partially observable MPDs (POMDPs)

2/26

Worlds

START

0.1

0.8

(b)

0.1

3/26

Markov Decision Processes (MDPs)

A Markov decision process (MDP) is a 4-tuple (S, A, Pr(s’ | s,a), R(s)), where
» S is a set of states,
> A, or Action(s) is a set of actions, and

> Pr(s’| s, a) is a transition function giving the probability that executing action a in state s will
result in s'.

» Many authors use T'(s,a,s")

> R(s,a,s') is the reward the world provides to an agent for arriving in state s’ after executing
action a in state s, bounded by +R,,qx

> Many authors use R(s’), which is easier to think about — the reward for arriving in state s’
regardless of the s, a pair in the previous time step.

Some definitions of MDPs include an initialization function, I(s), which specifies the probability the

the agent will start in some state s € S, others specify a particular state sy from S as the start state.

4/26

MDP Solutions: Policies

Due to stochastic action results, fixed plans don't work. We need a function that returns a
recommended action for every state. Such a function is called a policy:

7(s)

The policy can also be stochastic, 7(a | s), but for now we'll assume deterministic policies.

By the maximum expected utility principle, for a policy to be optimal the action it recommends for
each state must have the highest value among all the action choices in that state.

The book uses state/action utility instead state/action value, but this is inconsistent
with the book’s previous definition of utility and its relationsip to preformance measures,
and it's inconsistent with the terminology used by the reinforcement learning community,
which is where this is headed. So we’ll use value instead of utility.

5/26

Values and Trajectories

Since we're in the realm of sequential decisions, the value of an action depends on the trajectory —
the sequence of states and actions — to which it leads.

Here again, we depart from the book’s terminology. The book uses history, but the
reinforcement learning community uses the term trajectory, T, so we'll use 7. We'll
also add reward to the trajectories, in line with reinforcement learning literature.

An experience sequence through an MDP is called a trajectory:

T = S0,0Q0,71,51,01,72,52,02,73, ...

And the values in an MDP are defined in terms of a trajectory:

VT(SOaa()arlv §1,Q1,7T2,..., stfl,atflv’rt)

We'll define these values after we learn about rewards.

6/26

Goals and Rewards

The purpose or goal of the agent is formalized in terms of a special signal, called the reward, passing
from the environment to the agent.

» At each time step, the reward is a simple number, R; € R.
» The agent’s goal is to maximize the total amount of reward it receives.
» This means maximizing not immediate reward, but cumulative reward in the long run.

We can clearly state this informal idea as the reward hypothesis:

All of what we mean by goals and purposes can be well thought of as the maximization
of the expected value of the cumulative sum of a received scalar signal (called reward).

So we represent goal states as the states giving the highest reward, with other states giving less
reward according to some structure, which we'll discuss later. First, how do we use these rewards to
determine values, which is what we need to derive policies . ..

7/26

Returns and Finite Time Horizons
As the agent traverses an MDP along some trajectory, it collects reward on each state transition.
The total reward collected in a trajectory is called the return, G. The simplest way to calculate
return is simple addition. For a trajectory of length T

Ge=rep1+ g2+ 7

With a finite horizon, there is an end time after which nothing happens, so if the end is time V:

V- (80,a0,71,51,01, -, "Nk, SN+k) = V7 (S0,00,71,81,01,---,TN,SN)

Finite time horizons lead to nonstationary policies, i.e., policies that differ based on time. Consider
that happens if N =3 vs N > 6 in our 4 x 3 grid world:

3
2 [=1]
1 | START

8/26

Infinite Horizon Return

An infinite horizon gives us a stationary policy, because there is no time limit influencing the
decision. From the current time step t:

o0
k
Gy =741 FTig2 + - F Tight1 = E VTt h1
k=0

v is the discount factor which says how much we discount future rewards. With v < 1 it decays
toward zero.

If rewards are bounded by +R,,,,, and 0 <~ < 1, then, using the standard sum of an infinite
geometric series.

o0 oo
R
VT(SO,GO,T17817al7r2, ceey St*lﬂat717rtvst) = ;'th(St7at7St+1) S ;'YtRmam = 1 Ta’j/
(17.1)

So the values of infinite trajectories are finite.

» We will use inifinite horizon models.
» \We can convert any finite horizon model into a infinite one by making terminal states absorbing
states, which include a single action that loops to the absorbing state and gives zero reward.

9/26

State Values and Optimal Policies

The expected value of executing 7 in starting in state s is:

o0

V™(s) =E | Y v R(st,m(s1), 5141)

t=0

The expectation E is with respect to the probability distribution over state sequences determined by
s and 7. Remember that 7(s;) returns an action a;. One or more policies, 7*, will have the highest
of all values.

7 (s) = argjl(aicz Pr(s' | s,a)[R(s,a,s") + vV (s')] (17.4)

The value of a state is the expected reward for the next transition plus the discounted utility of the
next state, assuming that the agent chooses the optimal action. That is, the utility of a state is
given by

Vi(s) = ax Pr(s' | s,a)[R(s,a,s") + vV (s')] (17.5)

This is the Bellman equation, which is the basis of the value iteration algorithm we'll see soon.

10/26

Bellman Equation Example

What is the optimal action in
state (1, 1) given the
following state values?

3 | 0.8516 | 0.9078 | 0.9578

2 0.8016 0.7003

4

1 0.7453 | 0.6953 | 0.6514 | 0.4279

1 2 3 4
We plug the state values above and v =1 into:
max ([0.8(—0.04 +9V(1,2)) +0.1(—0.04 + 1V (2,1)) + 0.1(—0.04 + vV (1, 1))], (Up)
[0.9(—0.04 + vV (1,1)) 4+ 0.1(—0.04 + vV (1, 2))], (Left)
[0.9(—=0.04 + 4V (1,1)) 4+ 0.1(—0.04 + 1V (2,1))], (Down)
[0.8(—0.04 +~V(2,1)) 4+ 0.1(—0.04 + vV (1,2)) + 0.1(—0.04 + V' (1, 1))]) (Right)

which yields Up as the optimal action because Up is the action that maximizes V'((1,1)).

11/26

Action Values and Optimal Policies

V(s) = max Q(s,a)
a
The optimal action value function is:

Q*(Sta at) = mﬁ“X (E[Gt|8t7 CL?])

If we know @Q@* we can use it to derive an optimal policy, 7*:

7" (a¢|st) < argmax (Q* (s¢, at))

at

We'll see this idea when we solve MDPs using dynamic programming.

12/26

Optimal Policies

Notice that in State (3, 1) there are two optimal actions:

3 | | B | B | [+1]

B R R B S e

1 2 3 4

This results from the successor states having equal values, giving rise to multiple optimal policies.

13/26

Reward Structures

Notice how different reward structures for non-goal states influences the optimal policy:

> | > | > > | > | >
W ==) =
N TR
r< —1.6497 —0.7311 <r < —0.4526
A -|=| |4 - =
V==V [+
—0.02714 <r<0 r>0

In general, negative rewards “motivate” the agent to seek the goal quickly.

14 /26

Representing MDPs

Plug/Unplug, Plug/Unplug,,

LeftWheel, LeftWheel |

RightWheel; RightWheel, |

)

Charging,.
"

"‘Vz‘ Batteryy,
g

15/26

Bellman Value Update Rule

The value iteration algorithm initializes each state's value to a random value, then iteratively update
these values by turning the Bellman equation into an update rule (the Bellman update):

Vit1(s) < R(s) + max T(s,a,s")V;(s") (1)

These updates are applied at the same time for all states, i.e., the values in iteration i + 1 are
calculated from the values in iteration i. The value iteration algorithm is shown in Algorithm 1.

Algorithm 1 Value lteration

V' <« random initial values
repeat
Vi<V
for each s € S do
V'(s) < R(s) + maxqea .. T(s,a,s)V(s')
VeV
until V' changes by a sufficiently small amount

16/26

Value lteration Algorithm

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states S, actions A(s), transition model P(s'|s,a),
rewards R(s,a,s’), discount
€, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in S, initially zero
0, the maximum relative change in the utility of any state

repeat
U—U"; 50
for each state s in S do
U'[s] ¢-max, e a(5) Q-VALUE(mdp,s,a, U)
if |U'[s] — U[s]| > dthen 6+ |U'[s] — Uls]|
until 6 < €(1—7~)/v
return U

17/26

Value Iteration Converges Quickly

0s | /7
0.6 11
041!
0.2-:

Utility estimates

-0.2 1

0O 5 10 15 20 25 30 35 40
Number of iterations

18/26

Policy lteration

In policy iteration [?] we start with a random initial values and policy and alternate between two
steps for each iteration i:

» Policy evaluation. Use policy 7; to calculate the values of each state using the discounted
current values of their successor states. Since we are calculating the values under a particular
policy, we drop the max operator:

Vig1(s) = R(s)+7 > _T(s,a,s")V(s) (2)

> Policy improvement. Calculate policy ;41 using the values calculated in the previous step.

When policy improvement does not change the policy, an optimal policy has been found and policy
iteration terminates.

Note that since the update equation used in policy evaluation is linear, we can use linear algebra to
solve the set of simultaneous linear equations in O(n3). This method works fine for smaller state
spaces but may be too expensive for large state spaces. A solution to this problem is known as
modified policy iteration [?, ?], which combines policy iteration with value iteration by using a
bounded number of Bellman updates to perform the policy evaluation step.

19/26

Policy lteration Algorithm

function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, actions A(s), transition model P(s’|s,a)
local variables: U, a vector of utilities for states in S, initially zero
m, a policy vector indexed by state, initially random

repeat
U <~ POLICY-EVALUATION(7, U, mdp)
unchanged? < true
for each state s in S do
a* <+ argmax Q-VALUE(mdp,s,a,U)
acA(s)
if Q-VALUE(mdp,s,a*,U) > Q-VALUE(mdp, s, n[s],U) then
m[s] < a*; unchanged? +false
until unchanged?
return m

20/26

k-Armed Bandits

In Las Vegas, a one-armed bandit is a slot machine with one. A k-armed bandit is k levers, each of
which gives a sequence of rewards according to an unknown probability distribution. Problem: which
arm should agent pull next?

Many practical applications:

» deciding between k treatments to cure a -

disease -5 0,2,0,7.2,0,0,0, ...
» deciding between k investments,
» deciding between k research projects to fund, M

» deciding between k advertisements to show a
web page visitor,
> A/B testing.

TE || 1,1, L,L1L10,

21/26

Optimal Bandit Policy via Gittins Index

0

()

2 N\ 0 72

P

M

J] RO) Rl: RZ: RS: R47

£hnnnnnnm

x

A

A

()

A

0
Oogzmommmo 0

(b)

22/26

Bernoulli Bandit

(1,1
R=1 R=0
p=1/2 p=1/2
(2,1 (1,2)
R=1 0 1 R=0
p=2/3 1/3 1/3 p=2/3
(3,1 (2,2) (1,3)
1 0
R=1 0 2/4 2/4 1 R=0
p=3/4 1/4 1/4 p=3/4
4,1) (3,2) (2,3) (1,4)
(a)

Gittins index

23/26

POMDP Value lteration Algorithm

function POMDP-VALUE-ITERATION(pomdp, €) returns a utility function
inputs: pomdp, a POMDP with states S, actions A(s), transition model P(s'|s,a),
sensor model P(e|s), rewards R(s,a,s’), discount
€, the maximum error allowed in the utility of any state
local variables: U, U, sets of plans p with associated utility vectors

U’ <—a set containing all one-step plans [a], with aqy (s) = Yy P(s'|s,a) R(s,a,s")
repeat
U«Uu
U’ + the set of all plans consisting of an action and, for each possible next percept,
a plan in U with utility vectors computed according to Equation (16.18)
U’ <+~ REMOVE-DOMINATED-PLANS(U")
until MAX-DIFFERENCE(U,U’) < e(1—7)/v
return U

24 /26

Online POMDP Algorithms

Up Right Down Left

1100 0110 1100 1010 0110

25 /26

POMDP Belief Updates

Left Left Up Right = Right
G R P R
0 0001 1111 1000 1010 L 1001 L

26 /26

