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Sequential Decisions

In sequential decision problems, the agent’s utility depends on a sequence of decisions.
Sequential decision problems incorporate utilities, uncertainty, and sensing, and include search and
planning problems as special cases.
▶ Markov decision processes (MDPs)
▶ k-Armed bandits
▶ Partially observable MPDs (POMDPs)
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Worlds
Section 16.1 Sequential Decision Problems 553

Figure 16.1 (a) A simple, stochastic 4⇥3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

As in Chapter 3, the transition model (or just “model,” when the meaning is clear) de-
scribes the outcome of each action in each state. Here, the outcome is stochastic, so we write
P(s0 |s,a) for the probability of reaching state s0 if action a is done in state s. (Some authors
write T (s,a,s0) for the transition model.) We will assume that transitions are Markovian: the
probability of reaching s0 from s depends only on s and not on the history of earlier states.

To complete the definition of the task environment, we must specify the utility function
for the agent. Because the decision problem is sequential, the utility function will depend
on a sequence of states and actions—an environment history—rather than on a single state.
Later in this section, we investigate the nature of utility functions on histories; for now, we
simply stipulate that for every transition from s to s0 via action a, the agent receives a reward Reward

R(s,a,s0). The rewards may be positive or negative, but they are bounded by ±Rmax.1

For our particular example, the reward is �0.04 for all transitions except those entering
terminal states (which have rewards +1 and –1). The utility of an environment history is just
(for now) the sum of the rewards received. For example, if the agent reaches the +1 state after
10 steps, its total utility will be (9⇥ �0.04)+ 1=0.64. The negative reward of –0.04 gives
the agent an incentive to reach (4,3) quickly, so our environment is a stochastic generalization
of the search problems of Chapter 3. Another way of saying this is that the agent does not
enjoy living in this environment and so it wants to leave as soon as possible.

To sum up: a sequential decision problem for a fully observable, stochastic environment
with a Markovian transition model and additive rewards is called a Markov decision process, Markov decision

process

or MDP, and consists of a set of states (with an initial state s0); a set ACTIONS(s) of actions
in each state; a transition model P(s0 |s,a); and a reward function R(s,a,s0). Methods for
solving MDPs usually involve dynamic programming: simplifying a problem by recursively Dynamic

programming

breaking it into smaller pieces and remembering the optimal solutions to the pieces.

1 It is also possible to use costs c(s,a,s0), as we did in the definition of search problems in Chapter 3. The use
of rewards is, however, standard in the literature on sequential decisions under uncertainty.
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Markov Decision Processes (MDPs)

A Markov decision process (MDP) is a 4-tuple (S, A, Pr(s′ | s, a), R(s)), where
▶ S is a set of states,
▶ A, or Action(s) is a set of actions, and
▶ Pr(s′ | s, a) is a transition function giving the probability that executing action a in state s will

result in s′.
▶ Many authors use T (s, a, s′)

▶ R(s, a, s′) is the reward the world provides to an agent for arriving in state s′ after executing
action a in state s, bounded by ±Rmax

▶ Many authors use R(s′), which is easier to think about – the reward for arriving in state s′

regardless of the s, a pair in the previous time step.
Some definitions of MDPs include an initialization function, I(s), which specifies the probability the
the agent will start in some state s ∈ S, others specify a particular state s0 from S as the start state.

4 / 26



MDP Solutions: Policies

Due to stochastic action results, fixed plans don’t work. We need a function that returns a
recommended action for every state. Such a function is called a policy:

π(s)

The policy can also be stochastic, π(a | s), but for now we’ll assume deterministic policies.
By the maximum expected utility principle, for a policy to be optimal the action it recommends for
each state must have the highest value among all the action choices in that state.

The book uses state/action utility instead state/action value, but this is inconsistent
with the book’s previous definition of utility and its relationsip to preformance measures,
and it’s inconsistent with the terminology used by the reinforcement learning community,
which is where this is headed. So we’ll use value instead of utility.
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Values and Trajectories

Since we’re in the realm of sequential decisions, the value of an action depends on the trajectory –
the sequence of states and actions – to which it leads.

Here again, we depart from the book’s terminology. The book uses history, but the
reinforcement learning community uses the term trajectory, τ , so we’ll use τ . We’ll
also add reward to the trajectories, in line with reinforcement learning literature.

An experience sequence through an MDP is called a trajectory:

τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, . . .

And the values in an MDP are defined in terms of a trajectory:

Vτ (s0, a0, r1, s1, a1, r2, . . . , st−1, at−1, rt)

We’ll define these values after we learn about rewards.
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Goals and Rewards

The purpose or goal of the agent is formalized in terms of a special signal, called the reward, passing
from the environment to the agent.
▶ At each time step, the reward is a simple number, Rt ∈ R.
▶ The agent’s goal is to maximize the total amount of reward it receives.

▶ This means maximizing not immediate reward, but cumulative reward in the long run.
We can clearly state this informal idea as the reward hypothesis:

All of what we mean by goals and purposes can be well thought of as the maximization
of the expected value of the cumulative sum of a received scalar signal (called reward).

So we represent goal states as the states giving the highest reward, with other states giving less
reward according to some structure, which we’ll discuss later. First, how do we use these rewards to
determine values, which is what we need to derive policies . . .
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Returns and Finite Time Horizons
As the agent traverses an MDP along some trajectory, it collects reward on each state transition.
The total reward collected in a trajectory is called the return, G. The simplest way to calculate
return is simple addition. For a trajectory of length T :

Gt
.= rt+1 + rt+2 + · · ·+ rT

With a finite horizon, there is an end time after which nothing happens, so if the end is time N :

Vτ (s0, a0, r1, s1, a1, . . . , rN+k, sN+k) = Vτ (s0, a0, r1, s1, a1, . . . , rN , sN )

Finite time horizons lead to nonstationary policies, i.e., policies that differ based on time. Consider
that happens if N = 3 vs N > 6 in our 4× 3 grid world:
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Figure 16.1 (a) A simple, stochastic 4⇥3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

As in Chapter 3, the transition model (or just “model,” when the meaning is clear) de-
scribes the outcome of each action in each state. Here, the outcome is stochastic, so we write
P(s0 |s,a) for the probability of reaching state s0 if action a is done in state s. (Some authors
write T (s,a,s0) for the transition model.) We will assume that transitions are Markovian: the
probability of reaching s0 from s depends only on s and not on the history of earlier states.

To complete the definition of the task environment, we must specify the utility function
for the agent. Because the decision problem is sequential, the utility function will depend
on a sequence of states and actions—an environment history—rather than on a single state.
Later in this section, we investigate the nature of utility functions on histories; for now, we
simply stipulate that for every transition from s to s0 via action a, the agent receives a reward Reward

R(s,a,s0). The rewards may be positive or negative, but they are bounded by ±Rmax.1

For our particular example, the reward is �0.04 for all transitions except those entering
terminal states (which have rewards +1 and –1). The utility of an environment history is just
(for now) the sum of the rewards received. For example, if the agent reaches the +1 state after
10 steps, its total utility will be (9⇥ �0.04)+ 1=0.64. The negative reward of –0.04 gives
the agent an incentive to reach (4,3) quickly, so our environment is a stochastic generalization
of the search problems of Chapter 3. Another way of saying this is that the agent does not
enjoy living in this environment and so it wants to leave as soon as possible.

To sum up: a sequential decision problem for a fully observable, stochastic environment
with a Markovian transition model and additive rewards is called a Markov decision process, Markov decision

process

or MDP, and consists of a set of states (with an initial state s0); a set ACTIONS(s) of actions
in each state; a transition model P(s0 |s,a); and a reward function R(s,a,s0). Methods for
solving MDPs usually involve dynamic programming: simplifying a problem by recursively Dynamic

programming

breaking it into smaller pieces and remembering the optimal solutions to the pieces.

1 It is also possible to use costs c(s,a,s0), as we did in the definition of search problems in Chapter 3. The use
of rewards is, however, standard in the literature on sequential decisions under uncertainty.

The shorter time horizon forces the agent to risk ending up in state (4, 2), whereas the longer
horizon allows the agent to take the long way around to the goal state.
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Infinite Horizon Return
An infinite horizon gives us a stationary policy, because there is no time limit influencing the
decision. From the current time step t:

Gt = rt+1 + rt+2 + · · ·+ rt+k+1 =
∞∑

k=0
γkrt+k+1

γ is the discount factor which says how much we discount future rewards. With γ < 1 it decays
toward zero.
If rewards are bounded by ±Rmax and 0 ≤ γ < 1, then, using the standard sum of an infinite
geometric series.

Vτ (s0, a0, r1, s1, a1, r2, . . . , st−1, at−1, rt, st) =
∞∑

t=0
γtR(st, at, st+1) ≤

∞∑
t=0

γtRmax = Rmax

1− γ

(17.1)
So the values of infinite trajectories are finite.
▶ We will use inifinite horizon models.
▶ We can convert any finite horizon model into a infinite one by making terminal states absorbing

states, which include a single action that loops to the absorbing state and gives zero reward.
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State Values and Optimal Policies
The expected value of executing π in starting in state s is:

V π(s) = E

[ ∞∑
t=0

γtR(st, π(st), st+1)
]

The expectation E is with respect to the probability distribution over state sequences determined by
s and π. Remember that π(st) returns an action at. One or more policies, π∗, will have the highest
of all values.

π∗(s) = argmax
a∈A(s)

∑
s′

Pr(s′ | s, a) [R(s, a, s′) + γV (s′)] (17.4)

The value of a state is the expected reward for the next transition plus the discounted utility of the
next state, assuming that the agent chooses the optimal action. That is, the utility of a state is
given by

V (s) = max
a∈A(s)

∑
s′

Pr(s′ | s, a) [R(s, a, s′) + γV (s′)] (17.5)

This is the Bellman equation, which is the basis of the value iteration algorithm we’ll see soon.
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Bellman Equation Example
What is the optimal action in
state (1, 1) given the
following state values?

558 Chapter 16 Making Complex Decisions

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 16.3 The utilities of the states in the 4⇥3 world with �=1 and r= �0.04 for tran-
sitions to nonterminal states.

The utility function U(s) allows the agent to select actions by using the principle of
maximum expected utility from Chapter 15—that is, choose the action that maximizes the
reward for the next step plus the expected discounted utility of the subsequent state:

⇡⇤(s) = argmax
a2A(s)

Â
s0

P(s0 |s,a)[R(s,a,s0)+�U(s0)] . (16.4)

We have defined the utility of a state, U(s), as the expected sum of discounted rewards from
that point onwards. From this, it follows that there is a direct relationship between the utility
of a state and the utility of its neighbors: the utility of a state is the expected reward for theI
next transition plus the discounted utility of the next state, assuming that the agent chooses
the optimal action. That is, the utility of a state is given by

U(s) = max
a2A(s)

Â
s0

P(s0 |s,a)[R(s,a,s0)+�U(s0)] . (16.5)

This is called the Bellman equation, after Richard Bellman (1957). The utilities of theBellman equation

states—defined by Equation (16.2) as the expected utility of subsequent state sequences—are
solutions of the set of Bellman equations. In fact, they are the unique solutions, as we show
in Section 16.2.1.

Let us look at one of the Bellman equations for the 4⇥3 world. The expression for
U(1,1) is

max{ [0.8(�0.04+�U(1,2))+0.1(�0.04+�U(2,1))+0.1(�0.04+�U(1,1))],
[0.9(�0.04+�U(1,1))+0.1(�0.04+�U(1,2))],
[0.9(�0.04+�U(1,1))+0.1(�0.04+�U(2,1))],
[0.8(�0.04+�U(2,1))+0.1(�0.04+�U(1,2))+0.1(�0.04+�U(1,1))]}

where the four expressions correspond to Up, Left, Down and Right moves. When we plug in
the numbers from Figure 16.3, with �=1, we find that Up is the best action.

Another important quantity is the action-utility function, or Q-function: Q(s,a) is theQ-function

expected utility of taking a given action in a given state. The Q-function is related to utilities
in the obvious way:

U(s) = max
a

Q(s,a) . (16.6)

We plug the state values above and γ = 1 into:

max
(

[0.8(−0.04 + γV (1, 2)) + 0.1(−0.04 + γV (2, 1)) + 0.1(−0.04 + γV (1, 1))], (Up)

[0.9(−0.04 + γV (1, 1)) + 0.1(−0.04 + γV (1, 2))], (Left)
[0.9(−0.04 + γV (1, 1)) + 0.1(−0.04 + γV (2, 1))], (Down)

[0.8(−0.04 + γV (2, 1)) + 0.1(−0.04 + γV (1, 2)) + 0.1(−0.04 + γV (1, 1))]
)

(Right)

which yields Up as the optimal action because Up is the action that maximizes V ((1, 1)).
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Action Values and Optimal Policies

V (s) = max
a

Q(s, a)

The optimal action value function is:

Q∗(st, at) = max
π

(
E[Gt|st, aπ

t ]
)

If we know Q∗ we can use it to derive an optimal policy, π∗:

π∗(at|st)← argmax
at

(Q∗(st, at))

We’ll see this idea when we solve MDPs using dynamic programming.
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Optimal Policies

Notice that in State (3, 1) there are two optimal actions:

Section 16.1 Sequential Decision Problems 555

Figure 16.2 (a) The optimal policies for the stochastic environment with r= � 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

The first question to answer is whether there is a finite horizon or an infinite horizon Finite horizon

Infinite horizonfor decision making. A finite horizon means that there is a fixed time N after which nothing
matters—the game is over, so to speak. Thus,

Uh([s0,a0,s1,a1, . . . ,sN+k]) = Uh([s0,a0,s1,a1, . . . ,sN ])

for all k > 0. For example, suppose an agent starts at (3,1) in the 4⇥3 world of Figure 16.1,
and suppose that N =3. Then, to have any chance of reaching the +1 state, the agent must
head directly for it, and the optimal action is to go Up. On the other hand, if N =100, then
there is plenty of time to take the safe route by going Left. So, with a finite horizon, an optimal J
action in a given state may depend on how much time is left. A policy that depends on the
time is called nonstationary. Nonstationary policy

With no fixed time limit, on the other hand, there is no reason to behave differently in the
same state at different times. Hence, an optimal action depends only on the current state, and
the optimal policy is stationary. Policies for the infinite-horizon case are therefore simpler Stationary policy

than those for the finite-horizon case, and we deal mainly with the infinite-horizon case in
this chapter. (We will see later that for partially observable environments, the infinite-horizon
case is not so simple.) Note that “infinite horizon” does not necessarily mean that all state
sequences are infinite; it just means that there is no fixed deadline. There can be finite state
sequences in an infinite-horizon MDP that contains a terminal state.

The next question we must decide is how to calculate the utility of state sequences.
Throughout this chapter, we will additive discounted rewards: the utility of a history is Additive discounted

reward

Uh([s0,a0,s1,a1,s2, . . .]) = R(s0,a0,s1)+�R(s1,a1,s2)+�2R(s2,a2,s3)+ · · · ,
where the discount factor � is a number between 0 and 1. The discount factor describes the Discount factor

preference of an agent for current rewards over future rewards. When � is close to 0, rewards
in the distant future are viewed as insignificant. When � is close to 1, an agent is more willing
to wait for long-term rewards. When � is exactly 1, discounted rewards reduce to the special

This results from the successor states having equal values, giving rise to multiple optimal policies.

13 / 26



Reward Structures

Notice how different reward structures for non-goal states influences the optimal policy:
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Figure 16.2 (a) The optimal policies for the stochastic environment with r= � 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

The first question to answer is whether there is a finite horizon or an infinite horizon Finite horizon

Infinite horizonfor decision making. A finite horizon means that there is a fixed time N after which nothing
matters—the game is over, so to speak. Thus,

Uh([s0,a0,s1,a1, . . . ,sN+k]) = Uh([s0,a0,s1,a1, . . . ,sN ])

for all k > 0. For example, suppose an agent starts at (3,1) in the 4⇥3 world of Figure 16.1,
and suppose that N =3. Then, to have any chance of reaching the +1 state, the agent must
head directly for it, and the optimal action is to go Up. On the other hand, if N =100, then
there is plenty of time to take the safe route by going Left. So, with a finite horizon, an optimal J
action in a given state may depend on how much time is left. A policy that depends on the
time is called nonstationary. Nonstationary policy

With no fixed time limit, on the other hand, there is no reason to behave differently in the
same state at different times. Hence, an optimal action depends only on the current state, and
the optimal policy is stationary. Policies for the infinite-horizon case are therefore simpler Stationary policy

than those for the finite-horizon case, and we deal mainly with the infinite-horizon case in
this chapter. (We will see later that for partially observable environments, the infinite-horizon
case is not so simple.) Note that “infinite horizon” does not necessarily mean that all state
sequences are infinite; it just means that there is no fixed deadline. There can be finite state
sequences in an infinite-horizon MDP that contains a terminal state.

The next question we must decide is how to calculate the utility of state sequences.
Throughout this chapter, we will additive discounted rewards: the utility of a history is Additive discounted

reward

Uh([s0,a0,s1,a1,s2, . . .]) = R(s0,a0,s1)+�R(s1,a1,s2)+�2R(s2,a2,s3)+ · · · ,
where the discount factor � is a number between 0 and 1. The discount factor describes the Discount factor

preference of an agent for current rewards over future rewards. When � is close to 0, rewards
in the distant future are viewed as insignificant. When � is close to 1, an agent is more willing
to wait for long-term rewards. When � is exactly 1, discounted rewards reduce to the special

In general, negative rewards “motivate” the agent to seek the goal quickly.

14 / 26



Representing MDPs
Section 16.1 Sequential Decision Problems 561

Plug/Unplugt

LeftWheelt

RightWheelt

Chargingt

Batteryt

Chargingt+1

Batteryt+1

Chargingt+2

Batteryt+2

Rt

Xt Xt+1

Ut+2

Xt+2

 Ẋt+2 Ẋt+1 Ẋt

Rt+1

RightWheelt+1

LeftWheelt+1

Plug/Unplugt+1

Figure 16.4 A dynamic decision network for a mobile robot with state variables for battery
level, charging status, location, and velocity, and action variables for the left and right wheel
motors and for charging.

Chapter 2; they typically have an exponential complexity advantage over atomic representa-
tions and can model quite substantial real-world problems.

Figure 16.4, which is based on the DBN in Figure 14.13(b) (page 504), shows some
elements of a slightly realistic model for a mobile robot that can charge itself. The state St is
decomposed into four state variables:

• Xt consists of the two-dimensional location on a grid plus the orientation;
• Ẋt is the rate of change of Xt ;
• Chargingt is true when the robot is plugged in to a power source;
• Batteryt is the battery level, which we model as an integer in the range 0, . . . ,5.

The state space for the MDP is the Cartesian product of the ranges of these four variables. The
action is now a set At of action variables, comprised of Plug/Unplug, which has three values
(plug, unplug, and noop); LeftWheel for the power sent to the left wheel; and RightWheel for
the power sent to the right wheel. The set of actions for the MDP is the Cartesian product of
the ranges of these three variables. Notice that each action variable affects only a subset of
the state variables.

The overall transition model is the conditional distribution P(Xt+1|Xt ,At), which can be
computed as a product of conditional probabilities from the DDN. The reward here is a single
variable that depends only on the location X (for, say, arriving at a destination) and Charging,
as the robot has to pay for electricity used; in this particular model, the reward doesn’t depend
on the action or the outcome state.

The network in Figure 16.4 has been projected two steps into the future. Notice that the
network includes nodes for the rewards for times t and t +1, but the utility for time t +2. This

15 / 26



Bellman Value Update Rule
The value iteration algorithm initializes each state’s value to a random value, then iteratively update
these values by turning the Bellman equation into an update rule (the Bellman update):

Vi+1(s)← R(s) + max
a∈A

∑
s′

T (s, a, s′)Vi(s′) (1)

These updates are applied at the same time for all states, i.e., the values in iteration i + 1 are
calculated from the values in iteration i. The value iteration algorithm is shown in Algorithm 1.

Algorithm 1 Value Iteration

V ← random initial values
repeat

V ′ ← V
for each s ∈ S do

V ′(s)← R(s) + maxa∈A

∑
s′ T (s, a, s′)V (s′)

V ← V ′

until V changes by a sufficiently small amount
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Value Iteration Algorithm Section 16.2 Algorithms for MDPs 563

function VALUE-ITERATION(mdp, ✏) returns a utility function
inputs: mdp, an MDP with states S, actions A(s), transition model P(s0 |s,a),

rewards R(s,a,s0), discount �
✏, the maximum error allowed in the utility of any state

local variables: U, U0, vectors of utilities for states in S, initially zero
�, the maximum relative change in the utility of any state

repeat
U U0; � 0
for each state s in S do

U0[s] maxa2A(s) Q-VALUE(mdp, s, a, U)
if |U0[s] � U[s]| > � then � |U0[s] � U[s]|

until �  ✏(1��)/�
return U

Figure 16.6 The value iteration algorithm for calculating utilities of states. The termination
condition is from Equation (16.12).

state. The n equations contain n unknowns—the utilities of the states. So we would like to
solve these simultaneous equations to find the utilities. There is one problem: the equations
are nonlinear, because the “max” operator is not a linear operator. Whereas systems of linear
equations can be solved quickly using linear algebra techniques, systems of nonlinear equa-
tions are more problematic. One thing to try is an iterative approach. We start with arbitrary
initial values for the utilities, calculate the right-hand side of the equation, and plug it into the
left-hand side—thereby updating the utility of each state from the utilities of its neighbors.
We repeat this until we reach an equilibrium.

Let Ui(s) be the utility value for state s at the ith iteration. The iteration step, called a
Bellman update, looks like this: Bellman update

Ui+1(s) max
a2A(s)

Â
s0

P(s0 |s,a)[R(s,a,s0)+�Ui(s0)] , (16.10)

where the update is assumed to be applied simultaneously to all the states at each iteration.
If we apply the Bellman update infinitely often, we are guaranteed to reach an equilibrium
(see “convergence of value iteration” below), in which case the final utility values must be
solutions to the Bellman equations. In fact, they are also the unique solutions, and the corre-
sponding policy (obtained using Equation (16.4)) is optimal. The detailed algorithm, includ-
ing a termination condition when the utilities are “close enough,” is shown in Figure 16.6.
Notice that we make use of the Q-VALUE function defined on page 559.

We can apply value iteration to the 4⇥3 world in Figure 16.1(a). Starting with initial
values of zero, the utilities evolve as shown in Figure 16.7(a). Notice how the states at differ-
ent distances from (4,3) accumulate negative reward until a path is found to (4,3), whereupon
the utilities start to increase. We can think of the value iteration algorithm as propagating
information through the state space by means of local updates.
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Value Iteration Converges Quickly
564 Chapter 16 Making Complex Decisions
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Figure 16.7 (a) Graph showing the evolution of the utilities of selected states using value
iteration. (b) The number of value iterations required to guarantee an error of at most ✏=c ·
Rmax, for different values of c, as a function of the discount factor �.

Convergence of value iteration

We said that value iteration eventually converges to a unique set of solutions of the Bellman
equations. In this section, we explain why this happens. We introduce some useful mathe-
matical ideas along the way, and we obtain some methods for assessing the error in the utility
function returned when the algorithm is terminated early; this is useful because it means that
we don’t have to run forever. This section is quite technical.

The basic concept used in showing that value iteration converges is the notion of a con-
traction. Roughly speaking, a contraction is a function of one argument that, when applied toContraction

two different inputs in turn, produces two output values that are “closer together,” by at least
some constant factor, than the original inputs. For example, the function “divide by two” is
a contraction, because, after we divide any two numbers by two, their difference is halved.
Notice that the “divide by two” function has a fixed point, namely zero, that is unchanged by
the application of the function. From this example, we can discern two important properties
of contractions:

• A contraction has only one fixed point; if there were two fixed points they would not
get closer together when the function was applied, so it would not be a contraction.

• When the function is applied to any argument, the value must get closer to the fixed
point (because the fixed point does not move), so repeated application of a contraction
always reaches the fixed point in the limit.

Now, suppose we view the Bellman update (Equation (16.10)) as an operator B that is ap-
plied simultaneously to update the utility of every state. Then the Bellman equation becomes
U =BU and the Bellman update equation can be written as

Ui+1 BUi .

Next, we need a way to measure distances between utility vectors. We will use the max norm,Max norm

which measures the “length” of a vector by the absolute value of its biggest component:

kUk= max
s

|U(s)| .
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Policy Iteration

In policy iteration [?] we start with a random initial values and policy and alternate between two
steps for each iteration i:
▶ Policy evaluation. Use policy πi to calculate the values of each state using the discounted

current values of their successor states. Since we are calculating the values under a particular
policy, we drop the max operator:

Vi+1(s) = R(s) + γ
∑

s′

T (s, a, s′)V (s′) (2)

▶ Policy improvement. Calculate policy πi+1 using the values calculated in the previous step.
When policy improvement does not change the policy, an optimal policy has been found and policy
iteration terminates.
Note that since the update equation used in policy evaluation is linear, we can use linear algebra to
solve the set of simultaneous linear equations in O(n3). This method works fine for smaller state
spaces but may be too expensive for large state spaces. A solution to this problem is known as
modified policy iteration [?, ?], which combines policy iteration with value iteration by using a
bounded number of Bellman updates to perform the policy evaluation step.
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function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, actions A(s), transition model P(s0 |s,a)
local variables: U, a vector of utilities for states in S, initially zero

⇡, a policy vector indexed by state, initially random

repeat
U POLICY-EVALUATION(⇡, U, mdp)
unchanged? true
for each state s in S do

a⇤ argmax
a2A(s)

Q-VALUE(mdp, s, a, U)

if Q-VALUE(mdp, s, a⇤, U) > Q-VALUE(mdp, s, ⇡[s], U) then
⇡[s] a⇤; unchanged? false

until unchanged?
return ⇡

Figure 16.9 The policy iteration algorithm for calculating an optimal policy.

better policy, policy iteration must terminate. The algorithm is shown in Figure 16.9. As with
value iteration, we use the Q-VALUE function defined on page 559.

How do we implement POLICY-EVALUATION? It turns out that doing so is simpler than
solving the standard Bellman equations (which is what value iteration does), because the
action in each state is fixed by the policy. At the ith iteration, the policy ⇡i specifies the action
⇡i(s) in state s. This means that we have a simplified version of the Bellman equation (16.5)
relating the utility of s (under ⇡i) to the utilities of its neighbors:

Ui(s) = Â
s0

P(s0 |s,⇡i(s))[R(s,⇡i(s),s0)+�Ui(s0)] . (16.14)

For example, suppose ⇡i is the policy shown in Figure 16.2(a). Then we have ⇡i(1,1)=Up,
⇡i(1,2)=Up, and so on, and the simplified Bellman equations are

Ui(1,1) = 0.8[�0.04+Ui(1,2)]+0.1[�0.04+Ui(2,1)+0.1[�0.04+Ui(1,1)]] ,

Ui(1,2) = 0.8[�0.04+Ui(1,3)]+0.2[�0.04+Ui(1,2)] ,

and so on for all the states. The important point is that these equations are linear, because
the “max” operator has been removed. For n states, we have n linear equations with n un-
knowns, which can be solved exactly in time O(n3) by standard linear algebra methods. If the
transition model is sparse—that is, if each state transitions only to a small number of other
states—then the solution process can be faster still.

For small state spaces, policy evaluation using exact solution methods is often the most
efficient approach. For large state spaces, O(n3) time might be prohibitive. Fortunately, it
is not necessary to do exact policy evaluation. Instead, we can perform some number of
simplified value iteration steps (simplified because the policy is fixed) to give a reasonably
good approximation of the utilities. The simplified Bellman update for this process is

Ui+1(s) Â
s0

P(s0 |s,⇡i(s))[R(s,⇡i(s),s0)+�Ui(s0)] ,
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k-Armed Bandits

In Las Vegas, a one-armed bandit is a slot machine with one. A k-armed bandit is k levers, each of
which gives a sequence of rewards according to an unknown probability distribution. Problem: which
arm should agent pull next?

Many practical applications:
▶ deciding between k treatments to cure a

disease,
▶ deciding between k investments,
▶ deciding between k research projects to fund,
▶ deciding between k advertisements to show a

web page visitor,
▶ A/B testing.
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Figure 16.12 (a) A simple deterministic bandit problem with two arms. The arms can be
pulled in any order, and each yields the sequence of rewards shown. (b) A more general case
of the bandit in (a), where the first arm gives an arbitrary sequence of rewards and the second
arm gives a fixed reward �.

This definition is very general, covering a wide range of cases. The key property is that the
arms are independent, coupled only by the fact that the agent can work on only one arm at
a time. It’s possible to define a still more general version in which fractional efforts can be
applied to all arms simultaneously, but the total effort across all arms is bounded; the basic
results described here carry over to this case.

We will see shortly how to formulate a typical bandit problem within this framework, but
let’s warm up with the simple special case of deterministic reward sequences. Let �=0.5,
and suppose that there are two arms labeled M and M1. Pulling M multiple times yields the
sequence of rewards 0,2,0,7.2,0,0, . . ., while pulling M1 yields 1,1,1, . . . (Figure 16.12(a)).
If, at the beginning, one had to commit to one arm or the other and stick with it, the choice
would be made by computing the utility (total discounted reward) for each arm:

U(M) = (1.0⇥0)+(0.5⇥2)+(0.52⇥0)+(0.53⇥7.2) = 1.9

U(M1) =
•

Â
t =0

0.5t = 2.0 .

One might think the best choice is to go with M1, but a moment’s more thought shows
that starting with M and then switching to M1 after the fourth reward gives the sequence
S=0,2,0,7.2,1,1,1, . . ., for which

U(S) = (1.0⇥0)+(0.5⇥2)+(0.52⇥0)+(0.53⇥7.2)+
•

Â
t =4

0.5t = 2.025 .

Hence the strategy S that switches from M to M1 at the right time is better than either arm
individually. In fact, S is optimal for this problem: all other switching times give less reward.

Let’s generalize this case slightly, so that now the first arm M yields an arbitrary sequence
R0,R1,R2, . . . (which may be known or unknown) and the second arm M� yields �,�,�, . . .
for some known fixed constant � (see Figure 16.12(b)). This is called a one-armed banditOne-armed bandit

in the literature, because it is formally equivalent to the case where there is one arm M that
produces rewards R0,R1,R2, . . . and costs � for each pull. (Pulling arm M is equivalent to not
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Optimal Bandit Policy via Gittins Index
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Figure 16.13 (a) The reward sequence M =0,2,0,7.2,0,0,0, . . . augmented with a choice to
switch permanently to a constant arm M� at each point. (b) An MDP whose optimal value
is exactly equivalent to the optimal value for (a), at the point where the optimal policy is
indifferent between M and M�.

maximum value attained by the ratio. In combination with a fixed arm M� with 0 < � 
1.0133, the optimal policy collects the first four rewards from M and then switches to M�.
For � > 1.0133, the optimal policy always chooses M�.

To calculate the Gittins index for a general arm M with current state s, we simply make
the following observation: at the tipping point where an optimal policy is indifferent between
choosing arm M and choosing the fixed arm M�, the value of choosing M is the same as the
value of choosing an infinite sequence of �-rewards.

Suppose we augment M so that at each state in M, the agent has two choices: either
continue with M as before, or quit and receive an infinite sequence of �-rewards (see Fig-
ure 16.13(a)). This turns M into an MDP, whose optimal policy is just the optimal stopping
rule for M. Hence the value of an optimal policy in this new MDP is equal to the value of
an infinite sequence of �-rewards, that is, �/(1��). So we can just solve this MDP . . . but,
unfortunately, we don’t know the value of � to put into the MDP, as this is precisely what
we are trying to calculate. But we do know that, at the tipping point, an optimal policy is
indifferent between M and M�, so we could replace the choice to get an infinite sequence of
�-rewards with the choice to go back and restart M from its initial state s. (More precisely, we
add a new action in every state that has the same rewards and outcomes as the action avail-
able in s; see Exercise 16.KATV.) This new MDP Ms, called a restart MDP, is illustrated inRestart MDP

Figure 16.13(b).
We have the general result that the Gittins index for an arm M in state s is equal to 1��

times the value of an optimal policy for the restart MDP Ms. This MDP can be solved by any
of the algorithms in Section 16.2. Value iteration applied to Ms in Figure 16.13(b) gives a
value of 2.0266 for the start state, so we have �=2.0266 · (1��)=1.0133 as before.

16.3.2 The Bernoulli bandit

Perhaps the simplest and best-known instance of a bandit problem is the Bernoulli bandit,Bernoulli bandit

where each arm Mi produces a reward of 0 or 1 with a fixed but unknown probability µi.
The state of arm Mi is defined by si and fi, the counts of successes (1s) and failures (0s) so
far for that arm; the transition probability predicts the next outcome to be 1 with probability
(si)/(si + fi) and 0 with probability ( fi)/(si + fi). The counts are initialized to 1 so that
the initial probabilities are 1/2 rather than 0/0.4 The Markov reward process is shown in
Figure 16.14(a).

4 The probabilities are those of a Bayesian updating process with a Beta(1,1) prior (see Section 21.2.5).
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Figure 16.14 (a) States, rewards, and transition probabilities for the Bernoulli bandit. (b)
Gittins indices for the states of the Bernoulli bandit process.

We cannot quite apply the transformation of the preceding section to calculate the Gittins
index of the Bernoulli arm because it has infinitely many states. We can, however, obtain
a very accurate approximation by solving the truncated MDP with states up to si + fi =100
and �=0.9. The results are shown in Figure 16.14(b). The results are intuitively reasonable:
we see that, generally speaking, arms with higher payoff probabilities are preferred, but there
is also an exploration bonus associated with arms that have only been tried a few times. Exploration bonus

For example, the index for the state (3,2) is higher than the index for the state (7,4) (0.7057
vs. 0.6922), even though the estimated value at (3,2) is lower (0.6 vs. 0.6364).

16.3.3 Approximately optimal bandit policies

Calculating Gittins indices for more realistic problems is rarely easy. Fortunately, the general
properties observed in the preceding section—namely, the desirability of some combination
of estimated value and uncertainty—lend themselves to the creation of simple policies that
turn out to be “nearly as good” as optimal policies.

The first class of methods uses the upper confidence bound or UCB heuristic, previously Upper confidence
bound

introduced for Monte Carlo tree search (Figure 6.11 on page 209). The basic idea is to use
the samples from each arm to establish a confidence interval for the value of the arm, that is,
a range within which the value can be estimated to lie with high confidence; then choose the
arm with the highest upper bound on its confidence interval. The upper bound is the current
mean value estimate µ̂i plus some multiple of the standard deviation of the uncertainty in the
value. The standard deviation is proportional to

p
1/Ni, where Ni is the number of times arm

Mi has been sampled. So we have an approximate index value for arm Mi given by

UCB(Mi) = µ̂i +g(N)/
p

Ni ,

where g(N) is an appropriately chosen function of N, the total number of samples drawn
from all arms. A UCB policy simply picks the arm with the highest UCB value. Notice that
the UCB value is not strictly an index because it depends on N, the total number of samples
drawn across all arms, and not just on the arm itself.

The precise definition of g determines the regret relative to the clairvoyant policy, which
simply picks the best arm and yields average reward µ⇤. A famous result due to Lai and
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function POMDP-VALUE-ITERATION(pomdp, ✏) returns a utility function
inputs: pomdp, a POMDP with states S, actions A(s), transition model P(s0 |s,a),

sensor model P(e |s), rewards R(s,a,s0), discount �
✏, the maximum error allowed in the utility of any state

local variables: U, U0, sets of plans p with associated utility vectors ↵p

U0 a set containing all one-step plans [a], with ↵[a](s)= Âs0 P(s0 |s,a) R(s,a,s0)
repeat

U U0

U0 the set of all plans consisting of an action and, for each possible next percept,
a plan in U with utility vectors computed according to Equation (16.18)

U0 REMOVE-DOMINATED-PLANS(U0)
until MAX-DIFFERENCE(U,U0)  ✏(1��)/�
return U

Figure 16.16 A high-level sketch of the value iteration algorithm for POMDPs. The
REMOVE-DOMINATED-PLANS step and MAX-DIFFERENCE test are typically implemented
as linear programs.

Given such a utility function, an executable policy can be extracted by looking at which
hyperplane is optimal at any given belief state b and executing the first action of the corre-
sponding plan. In Figure 16.15(d), the corresponding optimal policy is still the same as for
depth-1 plans: Stay when b(B) > 0.5 and Go otherwise.

In practice, the value iteration algorithm in Figure 16.16 is hopelessly inefficient for larger
problems—even the 4⇥3 POMDP is too hard. The main reason is that given n undominated
conditional plans at level d, the algorithm constructs |A| ·n|E| conditional plans at level d +1
before eliminating the dominated ones. With the four-bit sensor, |E| is 16, and n can be in the
hundreds, so this is hopeless.

Since this algorithm was developed in the 1970s, there have been several advances, in-
cluding more efficient forms of value iteration and various kinds of policy iteration algo-
rithms. Some of these are discussed in the notes at the end of the chapter. For general
POMDPs, however, finding optimal policies is very difficult (PSPACE-hard, in fact—that is,
very hard indeed). The next section describes a different, approximate method for solving
POMDPs, one based on look-ahead search.

16.5.2 Online algorithms for POMDPs

The basic design for an online POMDP agent is straightforward: it starts with some prior
belief state; it chooses an action based on some deliberation process centered on its current
belief state; after acting, it receives an observation and updates its belief state using a filtering
algorithm; and the process repeats.

One obvious choice for the deliberation process is the expectimax algorithm from Sec-
tion 16.2.4, except with belief states rather than physical states as the decision nodes in the
tree. The chance nodes in the POMDP tree have branches labeled by possible observations
and leading to the next belief state, with transition probabilities given by Equation (16.17). A
fragment of the belief-state expectimax tree for the 4⇥3 POMDP is shown in Figure 16.17.
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Up Right Down Left

01101100 0110 1100 1010

Figure 16.17 Part of an expectimax tree for the 4⇥3 POMDP with a uniform initial belief
state. The belief states are depicted with shading proportional to the probability of being in
each location.

The time complexity of an exhaustive search to depth d is O(|A|d · |E|d), where |A| is
the number of available actions and |E| is the number of possible percepts. (Notice that
this is far less than the number of possible depth-d conditional plans generated by value
iteration.) As in the observable case, sampling at the chance nodes is a good way to cut
down the branching factor without losing too much accuracy in the final decision. Thus, the
complexity of approximate online decision making in POMDPs may not be drastically worse
than that in MDPs.

For very large state spaces, exact filtering is infeasible, so the agent will need to run
an approximate filtering algorithm such as particle filtering (see page 510). Then the belief
states in the expectimax tree become collections of particles rather than exact probability dis-
tributions. For problems with long horizons, we may also need to run the kind of long-range
playouts used in the UCT algorithm (Figure 6.11). The combination of particle filtering and
UCT applied to POMDPs goes under the name of partially observable Monte Carlo planning
or POMCP. With a DDN representation for the model, the POMCP algorithm is, at leastPOMCP

in principle, applicable to very large and realistic POMDPs. Details of the algorithm are
explored in Exercise 16.POMC. POMCP is capable of generating competent behavior in the
4⇥3 POMDP. A short (and somewhat fortunate) example is shown in Figure 16.18.

POMDP agents based on dynamic decision networks and online decision making have a
number of advantages compared with other, simpler agent designs presented in earlier chap-
ters. In particular, they handle partially observable, stochastic environments and can easily
revise their “plans” to handle unexpected evidence. With appropriate sensor models, they can
handle sensor failure and can plan to gather information. They exhibit “graceful degradation”
under time pressure and in complex environments, using various approximation techniques.

So what is missing? The principal obstacle to real-world deployment of such agents is
the inability to generate successful behavior over long time-scales. Random or near-random
playouts have no hope of gaining any positive reward on, say, the task of laying the table
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Left Left Up Right Right Right
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Figure 16.18 A sequence of percepts, belief states, and actions in the 4⇥3 POMDP with
a wall-sensing error of ✏=0.2. Notice how the early Left moves are safe—they are very
unlikely to fall into (4,2)—and coerce the agent’s location into a small number of possible
locations. After moving Up, the agent thinks it is probably in (3,3), but possibly in (1,3).
Fortunately, moving Right is a good idea in both cases, so it moves Right, finds out that it had
been in (1,3) and is now in (2,3), and then continues moving Right and reaches the goal.

for dinner, which might take tens of millions of motor-control actions. It seems necessary
to borrow some of the hierarchical planning ideas described in Section 11.4. At the time of
writing, there are not yet satisfactory and efficient ways to apply these ideas in stochastic,
partially observable environments.

Summary

This chapter shows how to use knowledge about the world to make decisions even when the
outcomes of an action are uncertain and the rewards for acting might not be reaped until many
actions have passed. The main points are as follows:

• Sequential decision problems in stochastic environments, also called Markov decision
processes, or MDPs, are defined by a transition model specifying the probabilistic
outcomes of actions and a reward function specifying the reward in each state.

• The utility of a state sequence is the sum of all the rewards over the sequence, possibly
discounted over time. The solution of an MDP is a policy that associates a decision
with every state that the agent might reach. An optimal policy maximizes the utility of
the state sequences encountered when it is executed.

• The utility of a state is the expected sum of rewards when an optimal policy is executed
from that state. The value iteration algorithm iteratively solves a set of equations
relating the utility of each state to those of its neighbors.

• Policy iteration alternates between calculating the utilities of states under the current
policy and improving the current policy with respect to the current utilities.

• Partially observable MDPs, or POMDPs, are much more difficult to solve than are
MDPs. They can be solved by conversion to an MDP in the continuous space of belief
states; both value iteration and policy iteration algorithms have been devised. Optimal
behavior in POMDPs includes information gathering to reduce uncertainty and there-
fore make better decisions in the future.

• A decision-theoretic agent can be constructed for POMDP environments. The agent
uses a dynamic decision network to represent the transition and sensor models, to
update its belief state, and to project forward possible action sequences.

We shall return MDPs and POMDPs in Chapter 23, which covers reinforcement learning
methods that allow an agent to improve its behavior from experience.
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