
Local Search Review

Artificial Intelligence

1. Which of the functions above is/are convex?

Solution: Convex: b

2. Which of the points above is/are a local minimum?

Solution: Local minima: 1, 3, 7

3. Which of the points above is/are a global minimum?

Solution: Global minima: 2, 5, 6

4. Write the basic hill-climbing algorithm.

Solution:
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Figure 4.1 A one-dimensional state-space landscape in which elevation corresponds to the
objective function. The aim is to find the global maximum.

function HILL-CLIMBING(problem) returns a state that is a local maximum
current problem.INITIAL
while true do

neighbor a highest-valued successor state of current
if VALUE(neighbor)  VALUE(current) then return current
current neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor.

then the aim is to find the highest peak—a global maximum—and we call the process hill Global maximum

climbing. If elevation corresponds to cost, then the aim is to find the lowest valley—a global
minimum—and we call it gradient descent. Global minimum

4.1.1 Hill-climbing search

The hill-climbing search algorithm is shown in Figure 4.2. It keeps track of one current state Hill climbing

and on each iteration moves to the neighboring state with highest value—that is, it heads in
the direction that provides the steepest ascent. It terminates when it reaches a “peak” where Steepest ascent

no neighbor has a higher value. Hill climbing does not look ahead beyond the immediate
neighbors of the current state. This resembles trying to find the top of Mount Everest in a
thick fog while suffering from amnesia. Note that one way to use hill-climbing search is to
use the negative of a heuristic cost function as the objective function; that will climb locally
to the state with smallest heuristic distance to the goal.

To illustrate hill climbing, we will use the 8-queens problem (Figure 4.3). We will use
a complete-state formulation, which means that every state has all the components of a Complete-state

formulation
solution, but they might not all be in the right place. In this case every state has 8 queens

5. What is the main weakness of hill-climbing algorithms?

Solution: They get stuck in local minima.
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6. How can the basic hill-climbing algorithm be modified to overcome its weaknesses?

Solution:

• Allow ”sideways” moves

• Stochastic hill climbing chooses randomly from uphill moves. Stochastic beam search does this
with k states in parallel.

• Random restart hill climbing restarts from multiple initial states.

7. How does simulated annealing avoid getting stuck in local minima?

Solution: Instead of picking the best move, simulated annealing picks a random move. If the move
is better than current state, it is always accepted. Otherwise, the algorithm accepts the move with
some probability less than 1. The probability decreases exponentially with the “badness” of the
move—the amount by which the evaluation is worsened. The probability also decreases as the
“temperature” T goes down: “bad” moves are more likely to be allowed at the start when T is high,
and they become more unlikely as T decreases. If the schedule lowers T to 0 slowly enough, then
a property of the Boltzmann distribution, e∆E/T , is that all the probability is concentrated on the
global maxima, which the algorithm will find with probability approaching 1.

8. What is (stochastic) beam search?

Solution: Local beam search keeps track of k states rather than just one. It begins with k randomly
generated states. At each step, all the successors of all k states are generated. If any one is a goal,
the algorithm halts. Otherwise, it selects the k best successors from the complete list and repeats.
In this way, information is passed among the parallel search threads.

Local beam search can suffer from lack of diversity – all k states clusterred in a small region of the
state space. Stochastic beam search fixes this problem by not simply choosing the top k successors,
but successors with probability proportional to the successor’s value, thus increasing diversity.

9. What does the mixing number parameter, ρ, in the basic algorithm control?

Solution: The number of “parents” used to generate new candidate solutions.

10. What do you have when you set ρ = 1 in the basic genetic algorithm?

Solution: When ρ = 1, the basic genetic algorithm is equivalent to stochastic beam search.

11. In gradient descent algorithms, what happens if you set the step size/learning rate parameter too high?

Solution: The algorithm might “skip over” the minimum.
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12. Define belief state.

Solution: An agent’s belief state is a set of states that the agent believes is possible. For example,
if Results(1, Suck) = {5, 7} and the agent executes Suck in State 1, then the agent’s belief state is
{5, 7}.

13. What form does the solution (sequence of actions that leads to a goal state) to an environment with
nondeterministic actions take?

Solution: A conditional/contingency plan.

14. Is it possible to find a solution to a problem in a sensorless environment?

Solution: Yes. Even if the environment is nondeterministic, as long as the environment is known,
e.g., agent has a map, then the environment can be coerced into a goal state by taking actions that
successively eliminiate non-goal states from the agent’s belief states.

15. Describe the three-step state estimation procedure used by agents in partially observable environments.

Solution:

• The prediction stage computes the belief state resulting from the action, Result(b,a). Because

this is a prediction, we use the notation b̂ = Result(b, a), where the hat over the b means
”estimated,” and we also use Predict(b,a) as a synonym for Result(b,a). Remember, a belief
state is a set of states.

b̂ = Result(b, a) = Predict(b, a)

• The possible percepts stage computes the set of percepts that could be observed in the
predicted belief state, that is, the set of percepts that could produce the predicted belief state
(using the letter o for observation):

PossiblePercepts(b̂) = {o : o = Percept(s) and s ∈ b̂}

• The update stage computes, for each possible percept, the belief state that would result from
the percept. The updated belief state bo is the set of states in b that could have produced the
percept:

bo = Update(b̂, o) = {s : o = Percept(s) and s ∈ b̂}
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