
Artificial Intelligence
Knowledge-Based AI

Christopher Simpkins

1 / 26

Knowledge and AI

In AI, knowledge-based agents use a process of reasoning over an internal representation of
knowledge to decide what actions to take.
▶ Knowledge base: a set of sentences.
▶ Sentence: an assertion about the world expressed in a knowledge represeantation

language, like propositional logic.
▶ Axioms: sentences taken as given – not derived from other sentences, assumptions.
▶ Inference: deriving new sentences from old sentences.
▶ Background knowledge: sentences present in an agent’s knowledge base before it starts

perceiving and acting.

2 / 26

Knowledge-Based Agents

▶ MAKE-PERCEPT-SENTENCE constructs sentence asserting that agent perceived the given
percept at the given time.

▶ MAKE-ACTION-QUERY constructs sentence that asks what action to take at current time.
▶ MAKE-ACTION-SENTENCE constructs sentence asserting chosen action was executed.

Section 7.1 Knowledge-Based Agents 227

function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t t + 1
return action

Figure 7.1 A generic knowledge-based agent. Given a percept, the agent adds the percept
to its knowledge base, asks the knowledge base for the best action, and tells the knowledge
base that it has in fact taken that action.

of logic. It also comes with well-developed inference technologies, which we describe in
sections 7.5 and 7.6. Finally, Section 7.7 combines the concept of knowledge-based agents
with the technology of propositional logic to build some simple agents for the wumpus world.

7.1 Knowledge-Based Agents

The central component of a knowledge-based agent is its knowledge base, or KB. A knowl- Knowledge base

edge base is a set of sentences. (Here “sentence” is used as a technical term. It is related Sentence

but not identical to the sentences of English and other natural languages.) Each sentence is
expressed in a language called a knowledge representation language and represents some

Knowledge
representation
languageassertion about the world. When the sentence is taken as being given without being derived

from other sentences, we call it an axiom. Axiom

There must be a way to add new sentences to the knowledge base and a way to query
what is known. The standard names for these operations are TELL and ASK, respectively.
Both operations may involve inference—that is, deriving new sentences from old. Inference Inference

must obey the requirement that when one ASKs a question of the knowledge base, the answer
should follow from what has been told (or TELLed) to the knowledge base previously. Later
in this chapter, we will be more precise about the crucial word “follow.” For now, take it to
mean that the inference process should not make things up as it goes along.

Figure 7.1 shows the outline of a knowledge-based agent program. Like all our agents,
it takes a percept as input and returns an action. The agent maintains a knowledge base, KB,
which may initially contain some background knowledge. Background

knowledge

Each time the agent program is called, it does three things. First, it TELLs the knowledge
base what it perceives. Second, it ASKs the knowledge base what action it should perform. In
the process of answering this query, extensive reasoning may be done about the current state
of the world, about the outcomes of possible action sequences, and so on. Third, the agent
program TELLs the knowledge base which action was chosen, and returns the action so that
it can be executed.

The details of the representation language are hidden inside three functions that imple-
ment the interface between the sensors and actuators on one side and the core representation
and reasoning system on the other. MAKE-PERCEPT-SENTENCE constructs a sentence as-

▶ Logical agents are described at the knowledge level using declarative statements of
knowledge and goals.

▶ At the implemetation level we use a procedureal approach, encoding behaviors directly in
program code.

3 / 26

The Wumpus World
Section 7.2 The Wumpus World 229

PIT

1 2 3 4

1

2

3

4

START

Stench

Stench

Breeze

Gold

PIT

PIT

Breeze

Breeze

Breeze

Breeze

Breeze

Stench

Figure 7.2 A typical wumpus world. The agent is in the bottom left corner, facing east
(rightward).

• Environment: A 4⇥4 grid of rooms, with walls surrounding the grid. The agent al-
ways starts in the square labeled [1,1], facing to the east. The locations of the gold and
the wumpus are chosen randomly, with a uniform distribution, from the squares other
than the start square. In addition, each square other than the start can be a pit, with
probability 0.2.

• Actuators: The agent can move Forward, TurnLeft by 90�, or TurnRight by 90�. The
agent dies a miserable death if it enters a square containing a pit or a live wumpus. (It
is safe, albeit smelly, to enter a square with a dead wumpus.) If an agent tries to move
forward and bumps into a wall, then the agent does not move. The action Grab can be
used to pick up the gold if it is in the same square as the agent. The action Shoot can
be used to fire an arrow in a straight line in the direction the agent is facing. The arrow
continues until it either hits (and hence kills) the wumpus or hits a wall. The agent has
only one arrow, so only the first Shoot action has any effect. Finally, the action Climb
can be used to climb out of the cave, but only from square [1,1].

• Sensors: The agent has five sensors, each of which gives a single bit of information:

– In the squares directly (not diagonally) adjacent to the wumpus, the agent will
perceive a Stench.1

– In the squares directly adjacent to a pit, the agent will perceive a Breeze.
– In the square where the gold is, the agent will perceive a Glitter.
– When an agent walks into a wall, it will perceive a Bump.
– When the wumpus is killed, it emits a woeful Scream that can be perceived any-

where in the cave.

The percepts will be given to the agent program in the form of a list of five symbols;
for example, if there is a stench and a breeze, but no glitter, bump, or scream, the agent
program will get [Stench,Breeze,None,None,None].

1 Presumably the square containing the wumpus also has a stench, but any agent entering that square is eaten
before being able to perceive anything.

A cave that you can drop into or climb out of at square [1, 1].
▶ Performance measure: +1000 for climbing out of the cave

with the gold, –1000 for falling into a pit or being eaten by the
wumpus, –1 for each action taken, –10 for using the arrow.
The game ends either when the agent dies or when the agent
climbs out of the cave.

▶ Environment: A 4×4 grid of rooms, agent always starts at [1,1], facing east. Gold and the
wumpus placed uniformly randomly from the squares other than the start square. Each
non-start square can be a pit with probability 0.2.

▶ Actuators: Forward, TurnLeft by 90◦, or TurnRight by 90◦. The agent dies if it enters pit
or a live wumpus square. Moves into walls have no effect. Grab picks up gold if agent in
gold square. Shoot can fires arrow in direction agent is facing. The arrow continues until it
either hits (and hence kills) the wumpus or hits a wall. The agent has only one arrow, so
only the first Shoot action has any effect. Climb climbs out of the cave if at [1,1].

4 / 26

First Steps Wumpus World
▶ Sensors: The agent has five sensors, each of which gives a single bit of information:

▶ In squares directly (not diagonally) adjacent to wumpus, agent perceives a Stench.
▶ In squares directly adjacent to a pit, the agent perceives a Breeze.
▶ In the square with gold, agent perceives a Glitter.
▶ When an agent walks into a wall, it perceives a Bump.
▶ When the wumpus is killed, it emits a Scream perceivable anywhere in the cave.

Percepts encoded as list of five symbols indicating presense or absence (by None) of:
[Stench,Breeze,Glitter,Bump,Scream] (a bit vector).

230 Chapter 7 Logical Agents

A

B

G

P

S

W

 = Agent

 = Breeze

 = Glitter, Gold

 = Pit

 = Stench

 = Wumpus

OK = Safe square

V = Visited

A

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

OKOK

B

P?

P?A

OK OK

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

(a) (b)

Figure 7.3 The first step taken by the agent in the wumpus world. (a) The initial situa-
tion, after percept [None,None,None,None,None]. (b) After moving to [2,1] and perceiving
[None,Breeze,None,None,None].

We can characterize the wumpus environment along the various dimensions given in Chap-
ter 2. Clearly, it is deterministic, discrete, static, and single-agent. (The wumpus doesn’t
move, fortunately.) It is sequential, because rewards may come only after many actions are
taken. It is partially observable, because some aspects of the state are not directly perceivable:
the agent’s location, the wumpus’s state of health, and the availability of an arrow. As for the
locations of the pits and the wumpus: we could treat them as unobserved parts of the state—
in which case, the transition model for the environment is completely known, and finding the
locations of pits completes the agent’s knowledge of the state. Alternatively, we could say
that the transition model itself is unknown because the agent doesn’t know which Forward
actions are fatal—in which case, discovering the locations of pits and wumpus completes the
agent’s knowledge of the transition model.

For an agent in the environment, the main challenge is its initial ignorance of the config-
uration of the environment; overcoming this ignorance seems to require logical reasoning. In
most instances of the wumpus world, it is possible for the agent to retrieve the gold safely.
Occasionally, the agent must choose between going home empty-handed and risking death to
find the gold. About 21% of the environments are utterly unfair, because the gold is in a pit
or surrounded by pits.

Let us watch a knowledge-based wumpus agent exploring the environment shown in
Figure 7.2. We use an informal knowledge representation language consisting of writing
down symbols in a grid (as in Figures 7.3 and 7.4).

The agent’s initial knowledge base contains the rules of the environment, as described
previously; in particular, it knows that it is in [1,1] and that [1,1] is a safe square; we denote
that with an “A” and “OK,” respectively, in square [1,1].

The first percept is [None,None,None,None,None], from which the agent can conclude
that its neighboring squares, [1,2] and [2,1], are free of dangers—they are OK. Figure 7.3(a)
shows the agent’s state of knowledge at this point.

▶ (a) after percept [None,None,None,None,None]
▶ (b) after moving to [2,1] and perceiving [None,Breeze,None,None,None]

5 / 26

Logic
Basics:
▶ Syntax specifies the form of sentences.

▶ x + y = 4 is well-formed, but x4y+ = is not.
▶ Semantics specifies the meaning of sentences.

▶ x + y = 4 is true in a world where x = 1 and y = 3.
▶ Model: a formal specification of a possible world, that is, a set of assignments of values to

the variables in the sentences of a knowledge base.
▶ Given a model {x = 3, y = 2}, the sentence x + y = 4 is false.

Satisfaction:
▶ “m satisfies α”: sentence α is true in model m, also “m is a model of α.”
▶ M(α) the set of all models of α, i.e., the set of all models in which α is true.

Entailment: α |= β: β follows logically from α

Formal definition of entailment:

α |= β if and only if M(α) ⊆ M(β)

6 / 26

Possible Models of Pits in Wumpus World

The presence of pits in squares [1, 2], [2, 2] and [3, 1] gives rise to 23 = 8 possible models.
Section 7.3 Logic 233

1 2 3

1

2 PIT

1 2 3

1

2 PIT

1 2 3

1

2 PIT PIT

PIT

1 2 3

1

2 PIT

PIT

1 2 3

1

2

PIT

1 2 3

1

2 PIT

PIT

1 2 3

1

2 PIT PIT

1 2 3

1

2

1 2 3

1

2 PIT

1 2 3

1

2 PIT

PIT

1 2 3

1

2

PIT

KB a1

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

(a)

1 2 3

1

2 PIT

1 2 3

1

2 PIT PIT

PIT

1 2 3

PIT

1 2 3

1

2 PIT

PIT

1 2 3

1

2 PIT PIT

1 2 3

1

2

KB

Breeze

a2

Breeze

Breeze

Breeze

Breeze

1 2 3

1

2 PIT

1 2 3

1

2 PIT

PIT

Breeze

Breeze

1

2

Breeze

1 2 3

1

2 PIT

1 2 3

1 2 3

1

2 PIT

PIT

1 2 3

1

2

α2

BBrerr eze

BBrerr eze

BBrerr eze

1

2

BBrerr eze

(b)

Figure 7.5 Possible models for the presence of pits in squares [1,2], [2,2], and [3,1]. The
KB corresponding to the observations of nothing in [1,1] and a breeze in [2,1] is shown by
the solid line. (a) Dotted line shows models of ↵1 (no pit in [1,2]). (b) Dotted line shows
models of ↵2 (no pit in [2,2]).

not contain a pit, so (ignoring other aspects of the world for now) there are 23 =8 possible
models. These eight models are shown in Figure 7.5.3

The KB can be thought of as a set of sentences or as a single sentence that asserts all
the individual sentences. The KB is false in models that contradict what the agent knows—
for example, the KB is false in any model in which [1,2] contains a pit, because there is
no breeze in [1,1]. There are in fact just three models in which the KB is true, and these are
shown surrounded by a solid line in Figure 7.5. Now let us consider two possible conclusions:

↵1 = “There is no pit in [1,2].” ↵2 = “There is no pit in [2,2].”

We have surrounded the models of ↵1 and ↵2 with dotted lines in Figures 7.5(a) and 7.5(b),
respectively. By inspection, we see the following:

in every model in which KB is true, ↵1 is also true.

Hence, KB |= ↵1: there is no pit in [1,2]. We can also see that

in some models in which KB is true, ↵2 is false.

Hence, KB does not entail ↵2: the agent cannot conclude that there is no pit in [2,2]. (Nor
can it conclude that there is a pit in [2,2].)4

The preceding example not only illustrates entailment but also shows how the definition
of entailment can be applied to derive conclusions—that is, to carry out logical inference. Logical inference

The inference algorithm illustrated in Figure 7.5 is called model checking, because it enu- Model checking

merates all possible models to check that ↵ is true in all models in which KB is true, that is,
that M(KB)✓M(↵).

3 Although the figure shows the models as partial wumpus worlds, they are really nothing more than assignments
of true and false to the sentences “there is a pit in [1,2]” etc. Models, in the mathematical sense, do not need to
have ’orrible ’airy wumpuses in them.
4 The agent can calculate the probability that there is a pit in [2,2]; Chapter 12 shows how.

Solid line delineates KB based on percept [None, None, None, None, None] in [1, 1] and
[None,Breeze,None,None,None] in [2, 1].
▶ (a). α1 = “There is no pit in [1, 2].” Here, KB |= α1
▶ (b). α2 = “There is no pit in [2, 2].” Here, KB ⊭ α2

Logical inference via model checking: because of (b), cannot conclude α2 (or ¬α2).
▶ M(KB) |= α1 but M(KB) ⊭ α2

7 / 26

Inference Algorithms

If an inference algorithm i can derive α from KB, we write

KB ⊢i α

which is pronounced “α is derived from KB by i” or “i derives α from KB.”
Important properties of inference algorithms:
▶ An inference algorithm that derives only entailed sentences is called sound or

truth-preserving.
▶ An inference algorithm is complete if it can derive any sentence that is entailed.

8 / 26

Representation vs World

If KB is true in the real world, then any sentence α derived from KB by a sound inference
procedure is also true in the real world?

234 Chapter 7 Logical Agents

Follows

Sentences Sentence
Entails S

e
m

a
n

tic
s

S
e
m

a
n

tic
s

Representation

World

Aspects of the
 real world

Aspect of the
 real world

Figure 7.6 Sentences are physical configurations of the agent, and reasoning is a process of
constructing new physical configurations from old ones. Logical reasoning should ensure that
the new configurations represent aspects of the world that actually follow from the aspects
that the old configurations represent.

In understanding entailment and inference, it might help to think of the set of all conse-
quences of KB as a haystack and of ↵ as a needle. Entailment is like the needle being in the
haystack; inference is like finding it. This distinction is embodied in some formal notation: if
an inference algorithm i can derive ↵ from KB, we write

KB `i ↵,

which is pronounced “↵ is derived from KB by i” or “i derives ↵ from KB.”
An inference algorithm that derives only entailed sentences is called sound or truth-Sound

preserving. Soundness is a highly desirable property. An unsound inference procedure es-Truth-preserving

sentially makes things up as it goes along—it announces the discovery of nonexistent needles.
It is easy to see that model checking, when it is applicable,5 is a sound procedure.

The property of completeness is also desirable: an inference algorithm is complete ifCompleteness

it can derive any sentence that is entailed. For real haystacks, which are finite in extent,
it seems obvious that a systematic examination can always decide whether the needle is in
the haystack. For many knowledge bases, however, the haystack of consequences is infinite,
and completeness becomes an important issue.6 Fortunately, there are complete inference
procedures for logics that are sufficiently expressive to handle many knowledge bases.

We have described a reasoning process whose conclusions are guaranteed to be true in
any world in which the premises are true; in particular, if KB is true in the real world, then anyI
sentence ↵ derived from KB by a sound inference procedure is also true in the real world. So,
while an inference process operates on “syntax”—internal physical configurations such as
bits in registers or patterns of electrical blips in brains—the process corresponds to the real-
world relationship whereby some aspect of the real world is the case by virtue of other aspects
of the real world being the case.7 This correspondence between world and representation is
illustrated in Figure 7.6.

The final issue to consider is grounding—the connection between logical reasoning pro-Grounding

cesses and the real environment in which the agent exists. In particular, how do we know thatI
5 Model checking works if the space of models is finite—for example, in wumpus worlds of fixed size. For
arithmetic, on the other hand, the space of models is infinite: even if we restrict ourselves to the integers, there
are infinitely many pairs of values for x and y in the sentence x+ y = 4.
6 Compare with the case of infinite search spaces in Chapter 3, where depth-first search is not complete.
7 As Wittgenstein (1922) put it in his famous Tractatus: “The world is everything that is the case.”

Grounding: connection between logical reasoning and the real environment. How do we know
that KB is true in the real world.
▶ Subject of volumes of philosophical investigation.
▶ For us: if agent perceives it, it is true.

9 / 26

Propositional Logic
▶ Atomic sentences consist of a single proposition symbol.
▶ Proposition symbol stands for a proposition that can be true or false.

▶ We use symbols that start with uppercase letter and may contain other letters or subscripts,
e.g., : P, Q, R, W1,3 and FacingEast

▶ True and False have fixed meanings
▶ Complex sentence: one or more atomic sentences constructed from logical connectives.
▶ ¬ (not) Unary connective. ¬W1,3 is the negation of W1,3

▶ A positive literal is an atomic sentence.
▶ a negative literal is a negated atomic sentence.

▶ ∧ (and). Binary connective. Conjunction, e.g., W1,3 ∧ P3,1

▶ ∨ (or). Binary connective. Disjunction, e.g., (W1,3 ∧ P3,1) ∨ W2,2

▶ =⇒ (implies). Binary connective. Implication, e.g., (W1,3 ∧ P3,1) =⇒ ¬W2,2
▶ (W1,3 ∧ P3,1) is the premise or antecedent.
▶ ¬W2,2 is the conclusion or consequent.
▶ Also known as rules or if-then statements.
▶ Some authors use ⊃ or →

▶ ⇐⇒ (if and only if). Binary connective. W1,3 ⇐⇒ ¬W2,2 is a biconditional

10 / 26

Grammar of Propositional Logic236 Chapter 7 Logical Agents

Sentence ! AtomicSentence | ComplexSentence

AtomicSentence ! True | False | P | Q | R | . . .

ComplexSentence ! (Sentence)
| ¬ Sentence

| Sentence ^ Sentence

| Sentence _ Sentence

| Sentence) Sentence

| Sentence , Sentence

OPERATOR PRECEDENCE : ¬,^,_,),,

Figure 7.7 A BNF (Backus–Naur Form) grammar of sentences in propositional logic, along
with operator precedences, from highest to lowest.

Figure 7.7 gives a formal grammar of propositional logic. (BNF notation is explained on
page 1081.) The BNF grammar is augmented with an operator precedence list to remove am-
biguity when multiple operators are used. The “not” operator (¬) has the highest precedence,
which means that in the sentence ¬A^B the ¬ binds most tightly, giving us the equivalent
of (¬A)^B rather than ¬(A^B). (The notation for ordinary arithmetic is the same: �2 + 4
is 2, not –6.) When appropriate, we also use parentheses and square brackets to clarify the
intended sentence structure and improve readability.

7.4.2 Semantics

Having specified the syntax of propositional logic, we now specify its semantics. The se-
mantics defines the rules for determining the truth of a sentence with respect to a particular
model. In propositional logic, a model simply sets the truth value—true or false—for everyTruth value

proposition symbol. For example, if the sentences in the knowledge base make use of the
proposition symbols P1,2, P2,2, and P3,1, then one possible model is

m1 = {P1,2 = false, P2,2 = false, P3,1 = true} .

With three proposition symbols, there are 23 =8 possible models—exactly those depicted
in Figure 7.5. Notice, however, that the models are purely mathematical objects with no
necessary connection to wumpus worlds. P1,2 is just a symbol; it might mean “there is a pit
in [1,2]” or “I’m in Paris today and tomorrow.”

The semantics for propositional logic must specify how to compute the truth value of any
sentence, given a model. This is done recursively. All sentences are constructed from atomic
sentences and the five connectives; therefore, we need to specify how to compute the truth
of atomic sentences and how to compute the truth of sentences formed with each of the five
connectives. Atomic sentences are easy:

• True is true in every model and False is false in every model.
• The truth value of every other proposition symbol must be specified directly in the

model. For example, in the model m1 given earlier, P1,2 is false.

11 / 26

Semantics of Propositional Logic

Section 7.4 Propositional Logic: A Very Simple Logic 237

P Q ¬P P^Q P_Q P) Q P , Q

false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

Figure 7.8 Truth tables for the five logical connectives. To use the table to compute, for
example, the value of P_Q when P is true and Q is false, first look on the left for the row
where P is true and Q is false (the third row). Then look in that row under the P_Q column
to see the result: true.

For complex sentences, we have five rules, which hold for any subsentences P and Q (atomic
or complex) in any model m (here “iff” means “if and only if”):

• ¬P is true iff P is false in m.
• P^Q is true iff both P and Q are true in m.
• P_Q is true iff either P or Q is true in m.
• P) Q is true unless P is true and Q is false in m.
• P, Q is true iff P and Q are both true or both false in m.

The rules can also be expressed with truth tables that specify the truth value of a complex Truth table

sentence for each possible assignment of truth values to its components. Truth tables for the
five connectives are given in Figure 7.8. From these tables, the truth value of any sentence
s can be computed with respect to any model m by a simple recursive evaluation. For ex-
ample, the sentence ¬P1,2^ (P2,2_P3,1), evaluated in m1, gives true^ (false_ true)= true^
true= true. Exercise 7.TRUV asks you to write the algorithm PL-TRUE?(s, m), which com-
putes the truth value of a propositional logic sentence s in a model m.

The truth tables for “and,” “or,” and “not” are in close accord with our intuitions about
the English words. The main point of possible confusion is that P_Q is true when P is true
or Q is true or both. A different connective, called “exclusive or” (“xor” for short), yields
false when both disjuncts are true.8 There is no consensus on the symbol for exclusive or;
some choices are _̇ or 6= or �.

The truth table for) may not quite fit one’s intuitive understanding of “P implies Q” or
“if P then Q.” For one thing, propositional logic does not require any relation of causation
or relevance between P and Q. The sentence “5 is odd implies Tokyo is the capital of Japan”
is a true sentence of propositional logic (under the normal interpretation), even though it is
a decidedly odd sentence of English. Another point of confusion is that any implication is
true whenever its antecedent is false. For example, “5 is even implies Sam is smart” is true,
regardless of whether Sam is smart. This seems bizarre, but it makes sense if you think of
“P) Q” as saying, “If P is true, then I am claiming that Q is true; otherwise I am making
no claim.” The only way for this sentence to be false is if P is true but Q is false.

The biconditional, P, Q, is true whenever both P) Q and Q) P are true. In English,
this is often written as “P if and only if Q.” Many of the rules of the wumpus world are best

8 Latin uses two separate words: “vel” is inclusive or and “aut” is exclusive or.

12 / 26

Propositional Theorem Proving

So far we’ve done model checking: enumerating models and showing that the sentence must
hold in all models.
Now we turn to theorem proving: applying rules of inference directly to the sentences in our
knowledge base to construct a proof of the desired sentence without consulting models.
Some basic concepts:
▶ Logical equivalence: two sentences α and β are logically equivalent if they are true in the

same set of models. α ≡ β

▶ α ≡ β if and only if α |= β and β |= α

▶ Validity: A sentence is valid if it is true in all models. For example, the sentence P ∧ ¬P is
valid. Valid sentences are also known as tautologies.

▶ Deduction theorem:
For any sentences α and β , α |= β if and only iff the sentence (α =⇒ β) is valid.

▶ A sentence is satisfiable if it is true in, or satisfied by, some model

13 / 26

Inference Rules

General form:

Givens

Conclusions

Modus Ponens:

α =⇒ β, α

β

And-Elimination:

α ∧ β

α

14 / 26

Logical Equivalences

Functionally equivalent to inference rules. Left side on top, right side on bottom.

Section 7.5 Propositional Theorem Proving 241

(↵^�) ⌘ (�^↵) commutativity of ^
(↵_�) ⌘ (�_↵) commutativity of _

((↵^�)^�) ⌘ (↵^ (�^�)) associativity of ^
((↵_�)_�) ⌘ (↵_ (�_�)) associativity of _

¬(¬↵) ⌘ ↵ double-negation elimination
(↵) �) ⌘ (¬�) ¬↵) contraposition
(↵) �) ⌘ (¬↵_�) implication elimination
(↵ , �) ⌘ ((↵) �)^ (�) ↵)) biconditional elimination
¬(↵^�) ⌘ (¬↵_¬�) De Morgan
¬(↵_�) ⌘ (¬↵^¬�) De Morgan

(↵^ (�_�)) ⌘ ((↵^�)_ (↵^�)) distributivity of ^ over _
(↵_ (�^�)) ⌘ ((↵_�)^ (↵_�)) distributivity of _ over ^

Figure 7.11 Standard logical equivalences. The symbols ↵, �, and � stand for arbitrary
sentences of propositional logic.

in propositional logic—the SAT problem—was the first problem proved to be NP-complete. SAT

Many problems in computer science are really satisfiability problems. For example, all the
constraint satisfaction problems in Chapter 5 ask whether the constraints are satisfiable by
some assignment.

Validity and satisfiability are of course connected: ↵ is valid iff ¬↵ is unsatisfiable; con-
trapositively, ↵ is satisfiable iff ¬↵ is not valid. We also have the following useful result: J

↵ |= � if and only if the sentence (↵^¬�) is unsatisfiable.

Proving � from ↵ by checking the unsatisfiability of (↵^¬�) corresponds exactly to the
standard mathematical proof technique of reductio ad absurdum (literally, “reduction to an Reductio ad

absurdum
absurd thing”). It is also called proof by refutation or proof by contradiction. One assumes a Refutation

Contradictionsentence � to be false and shows that this leads to a contradiction with known axioms ↵. This
contradiction is exactly what is meant by saying that the sentence (↵^¬�) is unsatisfiable.

7.5.1 Inference and proofs

This section covers inference rules that can be applied to derive a proof—a chain of conclu- Inference rules

Proofsions that leads to the desired goal. The best-known rule is called Modus Ponens (Latin for
Modus Ponensmode that affirms) and is written

↵) �, ↵

�

The notation means that, whenever any sentences of the form ↵) � and ↵ are given, then
the sentence � can be inferred. For example, if (WumpusAhead^WumpusAlive)) Shoot
and (WumpusAhead^WumpusAlive) are given, then Shoot can be inferred.

Another useful inference rule is And-Elimination, which says that, from a conjunction, And-Elimination

any of the conjuncts can be inferred:

↵^�
↵

.

For example, from (WumpusAhead^WumpusAlive), WumpusAlive can be inferred.

15 / 26

Representational Power of Formal Languages

▶ Propositional logic assumes that there are facts that either hold or do not hold in the world.
Each fact can be in one of two states—true or false—and each model assigns true or false
to each proposition symbol.

▶ First-order logic assumes that the world consists of objects with certain relations among
them that do or do not hold.

Section 8.1 Representation Revisited 273

Language Ontological Commitment Epistemological Commitment
(What exists in the world) (What an agent believes about facts)

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief 2 [0,1]
Fuzzy logic facts with degree of truth 2 [0,1] known interval value

Figure 8.1 Formal languages and their ontological and epistemological commitments.

This ontological commitment is a great strength of logic (both propositional and first-
order), because it allows us to start with true statements and infer other true statements. It is
especially powerful in domains where every proposition has clear boundaries, such as math-
ematics or the wumpus world, where a square either does or doesn’t have a pit; there is no
possibility of a square with a vaguely pit-like indentation. But in the real world, many propo-
sitions have vague boundaries: Is Vienna a large city? Does this restaurant serve delicious
food? Is that person tall? It depends who you ask, and their answer might be “kind of.”

One response is to refine the representation: if a crude line dividing cities into “large”
and “not large” leaves out too much information for the application in question, then one
can increase the number of size categories or use a Population function symbol. Another
proposed solution comes from Fuzzy logic, which makes the ontological commitment that Fuzzy logic

propositions have a degree of truth between 0 and 1. For example, the sentence “Vienna is a Degree of truth

large city” might be true to degree 0.8 in fuzzy logic, while “Paris is a large city” might be true
to degree 0.9. This corresponds better to our intuitive conception of the world, but it makes it
harder to do inference: instead of one rule to determine the truth of A^B, fuzzy logic needs
different rules depending on the domain. Another possibility, covered in Section 25.1, is to
assign each concept to a point in a multidimensional space, and then measure the distance
between the concept “large city” and the concept “Vienna” or “Paris.”

Various special-purpose logics make still further ontological commitments; for example,
temporal logic assumes that facts hold at particular times and that those times (which may Temporal logic

be points or intervals) are ordered. Thus, special-purpose logics give certain kinds of objects
(and the axioms about them) “first class” status within the logic, rather than simply defin-
ing them within the knowledge base. Higher-order logic views the relations and functions Higher-order logic

referred to by first-order logic as objects in themselves. This allows one to make assertions
about all relations—for example, one could wish to define what it means for a relation to
be transitive. Unlike most special-purpose logics, higher-order logic is strictly more expres-
sive than first-order logic, in the sense that some sentences of higher-order logic cannot be
expressed by any finite number of first-order logic sentences.

A logic can also be characterized by its epistemological commitments—the possible Epistemological
commitment

states of knowledge that it allows with respect to each fact. In both propositional and first-
order logic, a sentence represents a fact and the agent either believes the sentence to be true,
believes it to be false, or has no opinion. These logics therefore have three possible states of
knowledge regarding any sentence.

▶ Ontological commitment: what a language assumes about the nature of reality.
▶ Epistemological commitments: the possible states of knowledge a language allows with

respect to each fact.
Sapir-Whorf Hypothesis: you can only think things you can express in a language you know.

16 / 26

Representational Power of First-Order LogicSection 8.2 Syntax and Semantics of First-Order Logic 275

R J
$

left leg

on headbrother

brother

person person
king

crown

left leg

Figure 8.2 A model containing five objects, two binary relations (brother and on-head), three
unary relations (person, king, and crown), and one unary function (left-leg).

includes the following mappings:

hRichard the Lionhearti ! Richard’s left leg
hKing Johni ! John’s left leg .

(8.2)

Strictly speaking, models in first-order logic require total functions, that is, there must be a Total functions

value for every input tuple. Thus the crown must have a left leg and so must each of the left
legs. There is a technical solution to this awkward problem involving an additional “invisible”
object that is the left leg of everything that has no left leg, including itself. Fortunately, as
long as one makes no assertions about the left legs of things that have no left legs, these
technicalities are of no import.

So far, we have described the elements that populate models for first-order logic. The
other essential part of a model is the link between those elements and the vocabulary of the
logical sentences, which we explain next.

8.2.2 Symbols and interpretations

We turn now to the syntax of first-order logic. The impatient reader can obtain a complete
description from the formal grammar in Figure 8.3.

The basic syntactic elements of first-order logic are the symbols that stand for objects,
relations, and functions. The symbols, therefore, come in three kinds: constant symbols, Constant symbol

which stand for objects; predicate symbols, which stand for relations; and function sym- Predicate symbol

bols, which stand for functions. We adopt the convention that these symbols will begin with Function symbol

uppercase letters. For example, we might use the constant symbols Richard and John; the
predicate symbols Brother, OnHead, Person, King, and Crown; and the function symbol
LeftLeg. As with proposition symbols, the choice of names is entirely up to the user. Each
predicate and function symbol comes with an arity that fixes the number of arguments. Arity

17 / 26

First-Order Logic
Also known as first-order predicate logic.
▶ Constant symbols stand for objects, e.g., Richard, John.
▶ Predicate symbols stand for relations, e.g., Brother(Richard, John).
▶ Function symbols stand for functions, e.g., LeftLeg(John)

▶ Above is also a term – a logical expression that refers to an object.
Atomic sentences:
▶ Brother(Richard, John), Married(Father(Richard), Mother(John))

Complex sentences:
▶ Brother(Richard, John) ∧ Brother(John, Richard)

Quantifiers:
▶ ∀x, King(x) =⇒ Person(x)

▶ For all objects x, if x is a King, then x is a P erson.
▶ In English:“All kings are persons.”

▶ ∃x, Crown(x) ∧ Onhead(x, John)
▶ There exists an x such that x is a Crown and x is on the head of John.
▶ In English: “John has a crown on his head.”

18 / 26

Knowledge Representation

Complex reasoning requires representation of abstract concepts:
▶ Events
▶ Time
▶ Physical Objects
▶ Beliefs

Representing abstract concepts is sometimes called ontological engineering.

19 / 26

Physical Objects
▶ Categories vs objects

▶ A category is a set which represents some commonality among objects in the set.
▶ Individuation: division into distinct objects

▶ Part vs whole
▶ Composites represent structural relationships between parts
▶ Biped(a) =⇒ ∃l1, l2, b, Leg(l1) ∧ Leg(l2) ∧ Body(b) ∧ P artOf(l1, b) . . .

▶ Measures
▶ Kind of quantity, e.g., length, weight, mass
▶ Units, conversions

▶ Count nouns vs mass nouns
▶ Count noun: 2 glasses of water – 1 glass is FEWER than 2 glasses
▶ Mass noun: a gallon of water – 1 gallon is LESS THAN 2 gallons

▶ Intrinsic vs extrinsic properties
▶ Intrinsic properties part of essence of object
▶ Extrinsic properties are not retained under subdivision
▶ Gold still glitters when split into two equal parts, but each part now has half the mass, weight.

20 / 26

Categories and Objects
Two choices for representing a category:
▶ use predicates, like Basketball(b), or
▶ reify the category as an object itself and say

▶ Member(b, Basketballs) or b ∈ Basketballs.
Can also have subcategories, e.g., Subset(Basketballs, Balls) or Basketballs ⊂ Balls.
Categories organize knowledge into inheritance hierarchies, or taxonomies, like this upper
ontology of the world:

Section 10.1 Ontological Engineering 333

Anything

AbstractObjects

Sets Numbers RepresentationalObjects Intervals Places ProcessesPhysicalObjects

Humans

Categories Sentences Measurements Moments Things Stuff

Times Weights Animals Agents Solid Liquid Gas

GeneralizedEvents

Figure 10.1 The upper ontology of the world, showing the topics to be covered later in
the chapter. Each link indicates that the lower concept is a specialization of the upper one.
Specializations are not necessarily disjoint—a human is both an animal and an agent. We
will see in Section 10.3.2 why physical objects come under generalized events.

Before considering the ontology further, we should state one important caveat. We have
elected to use first-order logic to discuss the content and organization of knowledge, although
certain aspects of the real world are hard to capture in FOL. The principal difficulty is that
most generalizations have exceptions or hold only to a degree. For example, although “toma-
toes are red” is a useful rule, some tomatoes are green, yellow, or orange. Similar exceptions
can be found to almost all the rules in this chapter. The ability to handle exceptions and un-
certainty is extremely important, but is orthogonal to the task of understanding the general
ontology. For this reason, we delay the discussion of exceptions until Section 10.5 of this
chapter, and the more general topic of reasoning with uncertainty until Chapter 12.

Of what use is an upper ontology? Consider the ontology for circuits in Section 8.4.2. It
makes many simplifying assumptions: time is omitted completely; signals are fixed and do
not propagate; the structure of the circuit remains constant. A more general ontology would
consider signals at particular times, and would include the wire lengths and propagation de-
lays. This would allow us to simulate the timing properties of the circuit, and indeed such
simulations are often carried out by circuit designers.

We could also introduce more interesting classes of gates, for example, by describing
the technology (TTL, CMOS, and so on) as well as the input–output specification. If we
wanted to discuss reliability or diagnosis, we would include the possibility that the structure
of the circuit or the properties of the gates might change spontaneously. To account for stray
capacitances, we would need to represent where the wires are on the board.

If we look at the wumpus world, similar considerations apply. Although we do represent
time, it has a simple structure: Nothing happens except when the agent acts, and all changes
are instantaneous. A more general ontology, better suited for the real world, would allow for
simultaneous changes extended over time. We also used a Pit predicate to say which squares
have pits. We could have allowed for different kinds of pits by having several individuals

21 / 26

Events and Time
An event calculus encodes events, fluents, and time points, and the relationships between them.
▶ A fluent is an aspect of the world that changes, an object that changes over time.
▶ An event is a temporal, locational, or relational fixing of object(s).

▶ E1 ∈ F lyings ∧ F lyer(E1, Shankar) ∧ Origin(E1, SF) ∧ Destination(E1, DC)
▶ A time predicate, T , fixes a fluent or event in time, e.g.,

▶ T (f, t1, t2) Fluent f is true for all times between t1 and t2
▶ Happens(e, t1, t2) Event e starts at time t1 and ends at t2

Section 10.3 Events 343

Meet(i, j)
Starts(i, j)

Finishes(i, j)

Equals(i, j)

Before(i, j)

After(j,i)

During(i, j)

Overlap(i, j) j

j

j

j

j

j

j

i

i

i

i

i

i

i

Figure 10.2 Predicates on time intervals.

writing axioms. To say that the reign of Elizabeth II immediately followed that of George VI,
and the reign of Elvis overlapped with the 1950s, we can write the following:

Meets(ReignOf (GeorgeVI),ReignOf (ElizabethII)) .
Overlap(Fifties,ReignOf (Elvis)) .
Begin(Fifties)=Begin(AD1950) .
End(Fifties)=End(AD1959) .

10.3.2 Fluents and objects

Physical objects can be viewed as generalized events, in the sense that a physical object is
a chunk of space–time. For example, USA can be thought of as an event that began in 1776
as a union of 13 states and is still in progress today as a union of 50. We can describe the
changing properties of USA using state fluents, such as Population(USA). A property of USA
that changes every four or eight years, barring mishaps, is its president. One might propose
that President(USA) is a logical term that denotes a different object at different times.

Unfortunately, this is not possible, because a term denotes exactly one object in a given
model structure. (The term President(USA, t) can denote different objects, depending on the
value of t, but our ontology keeps time indices separate from fluents.) The only possibility is
that President(USA) denotes a single object that consists of different people at different times.
It is the object that is George Washington from 1789 to 1797, John Adams from 1797 to 1801,
and so on, as in Figure 10.3. To say that George Washington was president throughout 1790,
we can write

T (Equals(President(USA),GeorgeWashington),Begin(AD1790),End(AD1790)) .

We use the function symbol Equals rather than the standard logical predicate =, because
we cannot have a predicate as an argument to T , and because the interpretation is not that
GeorgeWashington and President(USA) are logically identical in 1790; logical identity is not
something that can change over time. The identity is between the subevents of the objects
President(USA) and GeorgeWashington that are defined by the period 1790.

Predicates on time intervals.

22 / 26

Fluents344 Chapter 10 Knowledge Representation

time

1801
1797

1789

Figure 10.3 A schematic view of the object President(USA) for the early years.

10.4 Mental Objects and Modal Logic

The agents we have constructed so far have beliefs and can deduce new beliefs. Yet none
of them has any knowledge about beliefs or about deduction. Knowledge about one’s own
knowledge and reasoning processes is useful for controlling inference. For example, suppose
Alice asks “what is the square root of 1764” and Bob replies “I don’t know.” If Alice insists
“think harder,” Bob should realize that with some more thought, this question can in fact
be answered. On the other hand, if the question were “Is the president sitting down right
now?” then Bob should realize that thinking harder is unlikely to help. Knowledge about the
knowledge of other agents is also important; Bob should realize that the president does know.

What we need is a model of the mental objects that are in someone’s head (or something’s
knowledge base) and of the mental processes that manipulate those mental objects. The model
does not have to be detailed. We do not have to be able to predict how many milliseconds
it will take for a particular agent to make a deduction. We will be happy just to be able to
conclude that mother knows whether or not she is sitting.

We begin with the propositional attitudes that an agent can have toward mental objects:Propositional
attitude

attitudes such as Believes, Knows, Wants, and Informs. The difficulty is that these attitudes do
not behave like “normal” predicates. For example, suppose we try to assert that Lois knows
that Superman can fly:

Knows(Lois,CanFly(Superman)) .

One minor issue with this is that we normally think of CanFly(Superman) as a sentence,
but here it appears as a term. That issue can be patched up by reifying CanFly(Superman);
making it a fluent. A more serious problem is that, if it is true that Superman is Clark Kent,
then we must conclude that Lois knows that Clark can fly, which is wrong because (in most
versions of the story) Lois does not know that Clark is Superman.

(Superman = Clark)^Knows(Lois,CanFly(Superman))
|= Knows(Lois,CanFly(Clark))

This is a consequence of the fact that equality reasoning is built into logic. Normally that is

T (Equals(President(USA), GeorgeWashington), Begin(AD1789), End(AD1797))

Use Equals function instead of logical predicate = because can’t have have predicate as
argument to T .

23 / 26

Beliefs and Attitudes

Beliefs are mental objects. Consider

Knows(Lois, CanF ly(Superman))

What if Lois knows that Clark Kent is Superman?

(Superman = Clark) ∧ Knows(Lois, CanF ly(Superman))
|= Knows(Lois, CanF ly(Clark))

This gets out of hand quickly. Need modal logic, which includes modal operators that take
sentences as arguments instead of terms. A knows P becomes:

KAP

Where K is the modal operator for knowledge. First argument A is the agent and written as
subscript. Second argument, P , is the proposition that A “knows.”

24 / 26

Semantic Networks

Originally called existential graphs.

348 Chapter 10 Knowledge Representation

Mammals

JohnMary

Persons

Male
Persons

Female
Persons

1

2

SubsetOf

SubsetOfSubsetOf

MemberOf MemberOf

SisterOf Legs

LegsHasMother

Figure 10.4 A semantic network with four objects (John, Mary, 1, and 2) and four categories.
Relations are denoted by labeled links.

MemberOf

FlyEvents

Fly17

Shankar NewYork NewDelhi Yesterday

Agent

Origin Destination

During

Figure 10.5 A fragment of a semantic network showing the representation of the logical
assertion Fly(Shankar,NewYork,NewDelhi,Yesterday).

follows SubsetOf links up the hierarchy until it finds a category for which there is a boxed
Legs link—in this case, the Persons category. The simplicity and efficiency of this inference
mechanism, compared with semidecidable logical theorem proving, has been one of the main
attractions of semantic networks.

Inheritance becomes complicated when an object can belong to more than one category
or when a category can be a subset of more than one other category; this is called multiple in-
heritance. In such cases, the inheritance algorithm might find two or more conflicting valuesMultiple inheritance

answering the query. For this reason, multiple inheritance is banned in some object-oriented
programming (OOP) languages, such as Java, that use inheritance in a class hierarchy. It is
usually allowed in semantic networks, but we defer discussion of that until Section 10.6.

The reader might have noticed an obvious drawback of semantic network notation, com-
pared to first-order logic: the fact that links between bubbles represent only binary relations.
For example, the sentence Fly(Shankar,NewYork,NewDelhi,Yesterday) cannot be asserted
directly in a semantic network. Nonetheless, we can obtain the effect of n-ary assertions
by reifying the proposition itself as an event belonging to an appropriate event category.
Figure 10.5 shows the semantic network structure for this particular event. Notice that the
restriction to binary relations forces the creation of a rich ontology of reified concepts.

25 / 26

Closing Thoughts

▶ Much more to knowledge-based AI than presented here
▶ This overview enough to feel confident discussing knowledge-based AI at cocktail parties
▶ Knowledge-based AI heart of expert systems, failure of which led to an AI winter

▶ Knowledge-acquisition bottleneck hindered completeness
▶ Practically impossible for a physician to encode his/her medical knowledge in rules.

▶ Knowledge AI fell out of favor, has never really recovered the mantle of AI
▶ Didn’t stop Doug Lennat and his team at Cycorp from trying.

26 / 26

https://cyc.com/

