Artificial Intelligence: A Modern
Approach

Fourth Edition

Chapter 17

Making Complex Decisions

4 vbe A (] .
g ? 3
[4 A
[ows ik
AN :
@ |
TN A
| V2
T) e < 3
I Bida unarit 5
Yoo ‘
= - l :

russell EAtificial Intelligence
Norvig AModern Approach

P Fourth Edition

@ Pearson Copyright © 2021 Pearson Education, Inc. All Rights Reserved

¢ Sequential Decision Problems

4 Basic Probability Notation
4 Bandit Problems
¢ Partially Observable MDPs

¢ Algorithms for Solving POMDPs

) TR
@ Pearson © 2021 Pearson Education Ltd. 2

Sequential Decision Problems

3 0.8
0.1 0.1
2 [=1]
1 START
1 2 3 4
(a) (b)

a) A simple, stochastic 43 environment that presents the agent with a sequential
decision problem.

(b) llustration of the transition model of the environment: the “intended”
outcome occurs with probability 0.8, but with probability 0.2 the agent moves at
right angles to the intended direction. A collision with a wall results in no
movement. Transitions into the two terminal states have reward +1 and -1,
respectively, and all other transitions have a reward of —0.04.

) TR
@ Pearson © 2021 Pearson Education Ltd. 3

Sequential Decision Problems

* Markov decision process (MDP): a sequential decision problem for a fully
observable, stochastic environment

* MDP consists of:
* aset of states (with an initial state s,);
» aset ACTIONS(s) of actions in each state;
* a transition model P(s | s, a); and
« areward function R(s, a, s). Methods for

 MDP solutions usually involve dynamic programming simplifying a problem by
recursively breaking it into smaller pieces and remembering the optimal
solutions to the pieces.

e Asolution called policy.
* specify what the agent should do for any state that the agent might reach
* the quality of a policy is measured by the expected utility of possible
environment histories generated
* optimal policy: highest expected utility

) TR
@ Pearson © 2021 Pearson Education Ltd. 4

Sequential Decision Problems

e Utilities over time
* Not only possibility for the utility function on environment histories

« Utilities: Uy([sg, ag, 51, @1 - - ., S,])-
> || > > ||
A - =]))
3| | = | »
2 [A 4 = r<—16497 —0.7311 < r < —0.4526
I Y B B K e R R R
—0.0274 < r <0 F>0

(a) (b)

(a) The optimal policies for the stochastic environment with » = 0.04
for transitions between nonterminal states. There are two policies

because in state (3,1) both Left and Up are optimal. (b) Optimal
policies for four different ranges of 7.

) TR
@ Pearson © 2021 Pearson Education Ltd. 5

Sequential Decision Problems

* Finite horizon: fixed time N after which nothing matters
* Uy(lso, @0, S1, a1, . - ., Snid) = Un([So, @0, S, @1, -+, S\l)
e optimal action in a given state may depend on how much time is left
* Nonstationary: A policy that depends on the time.
 E.g, consider state (3, 1) withN=3vsN>6

 infinite horizon: no fixed time limit
* thereis no reason to behave differently in the same state at different times.

* Optimal action depends only on the current state, and the optimal policy is

stationary.
3
2 [(=1]
1 START
1 2 3 4
(a) (b)

) TR
@ Pearson © 2021 Pearson Education Ltd. 6

Sequential Decision Problems

 Additive discounted rewards:
U, ([so, ag, $1, a1, 8o, - . .]1) = R(sp, ag, s1) + YR(sy, aq, s5) + V2R(s», ay, 53) + * 7,
where the discount factor y is a number between 0 and 1.

V close to 0, not willing wait
v close to 1, willing wait long term reward

* Additive discounted rewards makes sense: empirical, economical, uncertainty about

true rewards, preferences over histories.

* Reduces complexity of infinite sequence due to utility is finite.

* ify < 1 and rewards are bounded by £R, .., we have (via sum of inf. Geometric
series)

(4]

oo R N
Uh([-'i[}.ﬂn..‘i] T D - Z A-'IR(""I-”I-SI+I) < E T-IRmaK — 1 Tdi \
=0 t—=0)

* Proper policy: guaranteed to reach a terminal state — no need for \gamma <1

* Infinite sequences can be compared in terms of the average reward obtained per
time

) TR
Pearson © 2021 Pearson Education Ltd. 7

Sequential Decision Problems

Utility of a state is the expected reward for the next transition plus the discounted
utility of the next state, assuming that the agent chooses the optimal action

U(s) = max ZP(HW.';.u)[R(,ﬁ'.u.s’) +~yU(s")].

acA(s)

This is called the Bellman equation, after Richard Bellman (1957).
Action-utility function, or Q-function: O(s, a)
* the expected utility of taking a given action in a given state.
 related to utilities in the obvious way:

U(s) =maxQ(s.a).

The optimal policy can be extracted from the Q-function

m(s) = argmax Q(s.a)
i

The Q-function is in algorithms for solving MDPs

function Q-VALUE(mdp, s, a, U) returns a utility value
return Y P(s"|s,a)[R(s,a,s") + v U[s']]
I

8

) TR
@ Pearson © 2021 Pearson Education Ltd. 8

Sequential Decision Problems

3 | 08516 | 0.9078 | 0.9578

2 0.8016 0.7003 -1

1 0.7453 | 0.6953 | 0.6514 | 0.4279

1 2 3 4

The utilities of the states in the 4 3 world with y = 1 and » = 0.04
for transitions to nonterminal states.

The expression for U (1, 1) is

max{ [0.8(—0.04 + yU (1, 2)) + 0.1(-0.04 + yU (2, 1)) +0.1(-0.04 + yU (1, 1))],
[0.9(-0.04 + yU (1, 1)) + 0.1(-0.04 + yU (1, 2))],
[0.9(-0.04 + yU (1, 1)) + 0.1(=0.04 + yU (2, 1))],
[0.8(—=0.04 + yU (2, 1)) + 0.1(=0.04 + yU (1, 2)) + 0.1(=0.04 + yU (1, 1))]}

@ Pearson © 2021 Pearson Education Ltd. 9

Reward scales

* Transformation of rewards will leave the optimal policy unchanged in an MDP:

R(s,a,s) = mR(s, a,s) + b.

Q(s.a) =) P(s'|s.a)[R(s.a.s") +1 max Q(s",a')] .

0'(s.a)

Y P(s'|s.a)[R(s,a,s") +7P(s") = D(s) +1 max Q'(s",a’)]

Y P(s'|s.a)[R'(s.a,s") +~ max Q'(s'.d)].

« Extract the optimal policy for M’

Ty (s) = argmax Q' (s,a) = argmax Q(s,a) — P(s)

a

o

* The function ®(s) is often called a potential,
« if ®(s) has higher value in states that have higher utility, the addition of
y®(st) — d(s) to the reward has the effect of leading the agent “uphill” in utility.

@ Pearson

© 2021 Pearson Education Ltd.

= argmax Q(s,a) = my(s).
o

10

Representing MDPs

* Dynamic decision networks, or DDNs are factored representations

Plug/Unplug, Plug/Unplug

LeftWheel, LeftWheel,
RightWheel, \
Charging,

Battery,

RightWheel,

Chargi
. argingt. |

<%

)
ol

Chargingy,»

»={ Battery;,

< {
~

A dynamic decision network for a mobile robot with state variables for battery level, charging
status, location, and velocity, and action variables for the left and right wheel motors and for
charging.

Iy o
@ Pearson © 2021 Pearson Education Ltd. 11

Representing MDPs

* The state S, decomposed into four state variables
* X, consists of the two-dimensional location on a grid plus the orientation;
« X, is the rate of change of X;
* Charging,is true when the robot is plugged in to a power source;
* Battery,is the battery level, which we model as an integer in the range O, ..., 5.
» The state space for the MDP is the Cartesian product of the ranges of these four
variables.
* The action is now a set A, Unplug, which has three values (plug, unplug, and no p);
LeftWheel for the power sent to the left wheel; and RightWheel for the power sent to
the right wheel.

» The overall transition model is the conditional distribution P(X, ,,|X,, A,), computed
as a product of conditional probabilities from the DDN

) TR
@ Pearson © 2021 Pearson Education Ltd. 12

Representing MDPs
Next

F

b)

@ Pearson

A At+1

T
CurrentPiece,, |

mEn

(a) (b)

The game of Tetris. The T-shaped piece at the top center can be dropped in any orientation and in any
horizontal position. If a row is completed, that row disappears and the rows above it move down, and
the agent receives one point. The next piece (here, the L-shaped piece at top right) becomes the

current piece, and a new next piece appears, chosen at random from the seven piece types. The game
ends if the board fills up to the top.

The DDN for the Tetris MDP.

© 2021 Pearson Education Ltd. 13

Algorithms for MDPs (Value Iteration

Value Iteration

The Bellman equation is the basis of the value iteration

If there are n possible states, then there are n Bellman equations,

The n equations contain » unknowns—the utilities of the states.

The equations are nonlinear, because the “max” operator is not a linear
operator.

start with arbitrary initial values for the utilities, calculate the right-hand side
of the equation, and plug it into the left-hand side—thereby updating the
utility of each state from the utilities of its neighbors.

Repeat this until reach an equilibrium.

The iteration step, called a Bellman update, looks like this

+1(s) < max ZP s'|s.a)[R(s,a,s") +~Ui(s")].

acA(s

update is assumed to be applied simultaneously to all the states at each
iteration

) TR
@ Pearson © 2021 Pearson Education Ltd.

14

Algorithms for MDPs (Value Iteration

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states S, actions A(s). transition model P(s"|s,a).
rewards R(s,a,s"). discount ~
e, the maximum error allowed in the utility of any state
local variables: U, U’. vectors of utilities for states in S, initially zero
d, the maximum relative change in the utility of any state

repeat
U—U" 60
for each state s in S do
U'[s] «—max, 45y Q-VALUE(mdp, s,a,U)
if |U'[s] — Uls]| > 6 then d+ |U'[s] — Uls]|
until & < €(1 —~)/~v
return U/

The value iteration algorithm for calculating utilities of states.

Iy e
@ Pearson © 2021 Pearson Education Ltd.

15

Algorithms for MDPs (Value Iteration

Value lteration applied to 4 x 3 world

1 1x10”) 0.0001
1 c=0.
(3:3) 1x10° ; c=0001 ———- |
gz 08 B c=0.01 ——=
s = 100000 ce=0.1
= 06 =3
= S 10000 ;
5 04 =
B £ 1000 -
= 02 =
= 3 100
0 —_
10 ;
-0.2
0 5 10 15 20 25 30 35 40 0.5 0.6 0.7 0.8 0.9 1
Number of iterations Discount factor vy

(a) (b)

(a) Graph showing the evolution of the utilities of selected states using value
iteration.

(b) The number of value iterations required to guarantee an error of at most £
= ¢ R, for different values of ¢, as a function of the discount factor .

max

Iy e
@ Pearson © 2021 Pearson Education Ltd.

Algorithms for MDPs (Policy Iteration

Policy Iteration
« Alternates the following two steps beginning from some initial policy 1:
* Policy evaluation: given a policy 1, calculate U; =U ™ - the utility of
cach state 1f ir; were to be executed.
* Policy improvement: Calculate a new MEU policy 1., using one-step
look-ahead based on U,
* The algorithm terminates when the policy improvement step yields no change
in the utilities.’
* Action in each state is fixed by the policy. At the ith iteration, the policy
specifies the action 1(s) in state s.
* Simplified version of the Bellman equation relating the utility of s (under ;)
to the utilities of its neighbors:

U(s) = Z P(s" s, m;(s))[R(s,mi(s),s") + vy Ui(s")].

* For large state spaces, time is prohibitive. Simplified Bellman update
modified policy iteration

U 1(s) X P(s"|s,m;(s))[R(s.m;(s).s") + v Ui(s")].

) TR
@ Pearson © 2021 Pearson Education Ltd.

17

Algorithms for MDPs (Policy Iteration

function POLICY-ITERATION(mdp) returns a policy
inputs: mdp. an MDP with states S, actions A(s). transition model P(s’|s,a)
local variables: U, a vector of utilities for states in S, initially zero
m, a policy vector indexed by state, initially random

repeat
U < POLICY-EVALUATION(7. U, mdp)
unchanged'’! < true
for each state s in S do
a* <+ argmax Q-VALUE(mdp,s,a,U)
acA(s)
if Q-VALUE(mdp,s,a*,U) > Q-VALUE(mdp,s,n[s|, U) then
w[s| «—a"; unchanged? +false
until unchanged?
return m

The policy iteration algorithm for calculating an optimal policy.

Iy e
@ Pearson © 2021 Pearson Education Ltd. 18

Algorithms for MDPs (Linear programming

Linear programming (LP)
* General approach for formulating constrained optimization problems
* Minimize U(s) for all s subject to the inequalities for every state s and every

action a.
Uls) = Z{P(s’ |s,a)[R(s,a,s") +~U(s")]

* In practice, it turns out that LP solvers are seldom as efficient as dynamic

programming for solving MDPs.
* linear programming is solvable in polynomial time polynomial however the
number of states is often very large.

) TR
@ Pearson © 2021 Pearson Education Ltd.

19

Algorithms for MDPs (Online algorithms

Online Algorithms

EXPECTIMAX algorithm builds a tree of alternating max and chance nodes
An evaluation function can be applied to the nonterminal leaves of the tree,
or they can be given a default value.

A decision can be extracted from the search tree by backing up the utility
values from the leaves, taking an average at the chance nodes and taking the
maximum at the decision nodes.

The explored states actually constitute a sub-MDP of the original MDP, and
this sub-MDP can be solved using any of the algorithms in this chapter.

This approach is called real-time dynamic programming (RTDP)

) TR
@ Pearson © 2021 Pearson Education Ltd.

20

Algorithms for MDPs (Online algorithms

Part of an expectimax tree for the 43 MDP rooted at (3,2). The
triangular nodes are max modes and the circular nodes are chance
nodes.

) TR
@ Pearson © 2021 Pearson Education Ltd. 21

Bandit Problems

* In Las Vegas, a one-armed bandit is a slot machine.
* An n-armed bandit has n levers.

* Behind each lever is a fixed but unknown probability distribution of
winnings.

* The gambler must choose which lever to play on each successive coin

* Tradeoff between exploitation of the current best action to obtain rewards
and exploration of previously unknown states and actions to gain
information

* Formal model for real problems important areas, such as
* deciding which of n possible new treatments to try to cure a disease,
* which of n possible investments to put part of your savings into,
* which of n possible research projects to fund

) TR
@ Pearson © 2021 Pearson Education Ltd.

22

Bandit Problems

Bandit problems definitions

“Each arm M, is a Markov reward process or MRP, that is, an MDP
with only one possible action ;. It has states S, transition model P,(s’ s,
a;), and reward R,(s, a;, s*). The arm defines a distribution over
sequences of rewards R;, R; |, R, ,, . . ., where each R, , 1s a random
variable.”

“The overall bandit problem is an MDP: the state space is given by the
Cartesian product § = S, S,; the actions are a,, . . ., a,; the transition
model updates the state of whichever arm A/ 1s selected, according to its
specific transition model, leaving the other arms unchanged; and the
discount factor is y.”

* The key property is that the arms are independent, only one arm can work
at a time.

@ Pearson

© 2021 Pearson Education Ltd.

23

Bandit Problems

M

Jl] 0,2,0,7.2,0,0,0, ...

‘JI] 11,1, 1,11, 1, ...

(a)

M

l] Ro. Ry, Ry Ry, Ry, ...

M,

_j'] A AL A

(b)

(a) A simple deterministic bandit problem with two arms. The arms
can be pulled in any order, and each yields the sequence of rewards
shown.

(b) A more general case of the bandit in (a), where the first arm gives
an arbitrary sequence of rewards and the second arm gives a fixed
reward A.

@ Pearson

© 2021 Pearson Education Ltd.

24

Bandit Problems

Computing the utility (total discounted reward) for each arm:

UM) = (1.0x0)+(0.5%2)+ (0.5 x0)+ (0.5 x7.2) = 1.9

UM,) = ¥ 0.5 =20.
=0

Starting with M and then switching to M after the fourth reward gives
the sequence S =0, 2,0, 7.2, 1, 1, 1, . . ., for which

Jl
|
IJ
le

U(S) = (1.0x0)+(0.5x2)+ (0.5 x 0) + i

The strategy S that switches from M to Mz at the right time is better than
either arm individually

) TR
@ Pearson © 2021 Pearson Education Ltd. 25

Bandit Problems

Optimal strategy is to run arm M up to time 7 and then switch to M, for
the rest of time.

Gittins Index: _ E (ZT 1 R;)

)\ — C =0 !
0 E ()

value describes the maximum obtainable utility per unit of discounted
time.

T [|2 3 4 5 6
R, 0 |2 0 7.2 0 0
Y AR ||0.0/1.0 1.0 1.9 1.9 1.9

v~ [[1.0[1.5 |1.75 |1.875 [1.9375|1.9687
ratio ||0.0]0.6667 [0.5714[1.0133[0.98060.9651

) TR
@ Pearson © 2021 Pearson Education Ltd.

Bandit Problems

The Bernoulli bandit

simplest and best-known instance of a bandit problem

where each arm M, produces a reward of O or 1 with a fixed but
unknown probability ;.

The state of arm M, i1s defined by s; and f,, the counts of successes (1s)
and failures (0s) so far for that arm;

the transition probability predicts the next outcome to be 1 with
probability (s;)/(s; + f;) and 0 with probability (£;)/(s; + f,).

The counts are initialized to 1 so that the initial probabilities are 1/2
rather than O .

) TR
@ Pearson © 2021 Pearson Education Ltd.

27

Bandit Problems

The Bernoulli bandit

(1.1)
R=1 /\g{} Gittins mndex
p=1/2 p=1/2 1 -
0.8 -
2.1 1.2 0.6 -
(2.1) (1.2) 06 1
R=1 _) 1 R=0 _ 0.2 -
p=2/3 1/3 1/3 p=2/3 9 -
(3.1) (2.2) (1.3) 8 h
] 0 10
R=l/\ 2/4 24 1 R=0 f
p=3/4 1/4 1/4 p=3/4
(4.1) (3.2) (2.3) (1.4)
@) (b)

(a) States, rewards, and transition probabilities for the Bernoulli bandit.
(b) Gittins indices for the states of the Bernoulli bandit process.

@ Pearson

© 2021 Pearson Education Ltd. 28

Partially Observable MDPs

* Partially observable MDPs (POMDPs)

e MDPs [the transition model P(s’ s, a), actions A(s), and reward function R(s,
a, st)]

* POMDPs are MDPs with sensor model P(els).

* Obtain compact representations for large POMDPs by using dynamic decision
networks

* We add sensor variables E,, assuming that the state variables X, may not be

directly observable.
* Thus the sensor model is P(E,|X,).

» Steps of decision cycle of a POMDP agent
» Given the current belief state b, execute the action a = s1*(b).
* Observe the percept e.
 Set the current belief state to FORWARD(b, a, e) and repeat.

) TR
@ Pearson © 2021 Pearson Education Ltd.

29

Partially Observable MDPs

@ Pearson

P(ela,b) = ZP la,s".b)P(s"|a,b)
= ZP | 5")P (s |a,b)
:ZP |t)ZPt|5frh

P(b'|b,a) = ZP b'le,a,b)P(e|a,b)

ZPJ’?|{ a,b ZPH‘) Z (s s,a)b(s).

p(b.a) Zh()ZP s'|s,a)R(s,a,s").

P(b' |b, a) and p(b, a) define an observable MDP on the space of belief
states.

© 2021 Pearson Education Ltd.

30

Algorithms for Solving POMDPs

Value iteration for POMDPs

function POMDP-VALUE-ITERATION(pomdp. €) returns a utility function
inputs: pomdp, a POMDP with states S. actions A(s), transition model P(s"|s,a).
sensor model P(e|s). rewards R(s,a,s"). discount
e, the maximum error allowed in the utility of any state
local variables: U, U’, sets of plans p with associated utility vectors a

U’ <—a set containing all one-step plans [a], with apy (s)= Yy P(s'|s,a) R(s,a,s’)
repeat
U+U'
U’ < the set of all plans consisting of an action and. for each possible next percept,
a plan in U with utility vectors computed according to Equation (16.18)
U’ +~ REMOVE-DOMINATED-PLANS(U")
until MAX-DIFFERENCE(U,U") < €(1 —~)/~
return U

A high-level sketch of the value iteration algorithm for POMDPs. The
REMOVE-DOMINATED-PLANS step and MAX-DIFFERENCE test are typically
implemented as linear programs.

by o
@ Pearson © 2021 Pearson Education Ltd. 31

Algorithms for Solving POMDPs

2
]

Utility
Utility

0 ; ; ; ; ' 0 : : : : '
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Probability of state B Probability of state B
(a) (b)
2 6 1
1.5 1 5.5 1
= =
g 1 5 s
=]]
0.5 1 45
0 ; ; ; ; 4 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
Probability of state B Probability of state B
(c) (d)

(a) Utility of two one-step plans as a function of the initial belief state b(B) for the two-state world, with the
corresponding utility function shown in bold. (b) Utilities for 8 distinct two-step plans. (c) Utilities for four
undominated two-step plans. (d) Utility function for optimal eight-step plans.

Iy e
@ Pearson © 2021 Pearson Education Ltd.

32

Algorithms for Solving POMDPs

Online algorithms for POMDPs

Starts with some prior belief state;

It chooses an action based on some deliberation process centered on its
current belief state;

After acting, it receives an observation and updates its belief state using a
filtering

Algorithm; and the process repeats.

Excpectimax algorithm (belief states rather than physical states as decision
nodes)

The chance nodes in the POMDP tree have branches labeled by possible
observations and leading to the next belief state, with transition probabilities

The combination of particle filtering and UCT applied to POMDPs goes under
the name of partially observable Monte Carlo planning or POMCP.

) TR
@ Pearson © 2021 Pearson Education Ltd. 33

Algorithms for Solving POMDPs

Part of an expectimax tree for the 43 POMDP with a uniform initial
belief state.

The belief states are depicted with shading proportional to the
probability of being in each location.

e p
@ Pearson © 2021 Pearson Education Ltd.

34

Summar

Sequential decision problems in stochastic environments, also called Markov
decision processes, or MDPs, are defined by a transition model

The solution of an MDP is a policy that associates a decision
with every state that the agent might reach.

The value iteration algorithm iteratively solves a set of equations
relating the utility of each state to those of its neighbors

Policy iteration alternates between calculating the utilities of states under the
current

Partially observable MDPs, or POMDPs, are much more difficult to solve than are
MDPs.

) TR
@ Pearson © 2021 Pearson Education Ltd. 35

	Slide 1: Artificial Intelligence: A Modern Approach
	Slide 2: Outline
	Slide 3: Sequential Decision Problems
	Slide 4: Sequential Decision Problems
	Slide 5: Sequential Decision Problems
	Slide 6: Sequential Decision Problems
	Slide 7: Sequential Decision Problems
	Slide 8: Sequential Decision Problems
	Slide 9: Sequential Decision Problems
	Slide 10: Reward scales
	Slide 11: Representing MDPs
	Slide 12: Representing MDPs
	Slide 13: Representing MDPs
	Slide 14: Algorithms for MDPs (Value Iteration)
	Slide 15
	Slide 16: Algorithms for MDPs (Value Iteration)
	Slide 17: Algorithms for MDPs (Policy Iteration)
	Slide 18: Algorithms for MDPs (Policy Iteration)
	Slide 19: Algorithms for MDPs (Linear programming)
	Slide 20: Algorithms for MDPs (Online algorithms)
	Slide 21: Algorithms for MDPs (Online algorithms)
	Slide 22: Bandit Problems
	Slide 23: Bandit Problems
	Slide 24: Bandit Problems
	Slide 25: Bandit Problems
	Slide 26: Bandit Problems
	Slide 27: Bandit Problems
	Slide 28: Bandit Problems
	Slide 29: Partially Observable MDPs
	Slide 30: Partially Observable MDPs
	Slide 31: Algorithms for Solving POMDPs
	Slide 32: Algorithms for Solving POMDPs
	Slide 33: Algorithms for Solving POMDPs
	Slide 34: Algorithms for Solving POMDPs
	Slide 35: Summary

