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a) A simple, stochastic 43 environment that presents the agent with a sequential
decision problem. 

(b) Illustration of the transition model of the environment: the “intended” 
outcome occurs with probability 0.8, but with probability 0.2 the agent moves at 
right angles to the intended direction. A collision with a wall results in no 
movement. Transitions into the two terminal states have reward +1 and –1, 
respectively, and all other transitions have a reward of –0.04.
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• Markov decision process (MDP): a sequential decision problem for a fully 
observable, stochastic environment

• MDP consists of:
• a set of states (with an initial state s0); 

• a set ACTIONS(s) of actions in each state; 

• a transition model P(s | s, a); and

• a reward function R(s, a, s ). Methods for

• MDP solutions usually involve dynamic programming simplifying a problem by 
recursively breaking it into smaller pieces and remembering the optimal 
solutions to the pieces.

• A solution called policy. 
• specify what the agent should do for any state that the agent might reach
• the quality of a policy is measured by the expected utility of possible 

environment histories generated
• optimal policy: highest expected utility

© 2021 Pearson Education Ltd.



Sequential Decision Problems

5

• Utilities over time
• Not only possibility for the utility function on environment histories
• Utilities: Uh([s0, a0, s1, a1 . . . , sn]).

(a) The optimal policies for the stochastic environment with r = 0.04 

for transitions between nonterminal states. There are two policies 

because in state (3,1) both Left and Up are optimal. (b) Optimal 

policies for four different ranges of r.
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• Finite horizon: fixed time N after which nothing matters
• Uh([s₀, a₀, s₁, a₁, . . . , sN₊k]) = Uh([s₀, a₀, s₁, a₁, . . . , sN])
• optimal action in a given state may depend on how much time is left
• Nonstationary: A policy that depends on the time. 

• E.g, consider state (3, 1) with N = 3 vs N > 6

• infinite horizon: no fixed time limit
• there is no reason to behave differently in the same state at different times.

• Optimal action depends only on the current state, and the optimal policy is 
stationary.
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• Additive discounted rewards:
Uh([s0, a0, s1, a1, s2, . . .]) = R(s0, a0, s1) + γR(s1, a1, s2) + γ2R(s2, a2, s3) + · · · ,

where the discount factor γ is a number between 0 and 1.

γ close to 0, not willing wait
γ close to 1, willing wait long term reward

• Additive discounted rewards makes sense: empirical, economical, uncertainty about 
true rewards, preferences over histories.

• Reduces complexity of infinite sequence due to utility is finite. 
• if γ < 1 and rewards are bounded by ±Rmax, we have (via sum of inf. Geometric 

series)

• Proper policy: guaranteed to reach a terminal state – no need for \gamma < 1

• Infinite sequences can be compared in terms of the average reward obtained per 
time
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• Utility of a state is the expected reward for the next transition plus the discounted 
utility of the next state, assuming that the agent chooses the optimal action

• This is called the Bellman equation, after Richard Bellman (1957).

• Action-utility function, or Q-function: Q(s, a)
• the expected utility of taking a given action in a given state. 

• related to utilities in the obvious way:

• The optimal policy can be extracted from the Q-function

• The Q-function is in algorithms for solving MDPs
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The utilities of the states in the 4 3 world with γ = 1 and r = 0.04 

for transitions to nonterminal states.

The expression for U (1, 1) is

max{ [0.8(−0.04 + γU (1, 2)) + 0.1(−0.04 + γU (2, 1)) +0.1(−0.04 + γU (1, 1))],
        [0.9(−0.04 + γU (1, 1)) + 0.1(−0.04 + γU (1, 2))],
        [0.9(−0.04 + γU (1, 1)) + 0.1(−0.04 + γU (2, 1))],
        [0.8(−0.04 + γU (2, 1)) + 0.1(−0.04 + γU (1, 2)) + 0.1(−0.04 + γU (1, 1))]}
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• Transformation of rewards will leave the optimal policy unchanged in an MDP:

R (s, a, s ) = mR(s, a, s ) + b.

• Extract the optimal policy for M!

• The function Φ(s) is often called a potential,

• if Φ(s) has higher value in states that have higher utility, the addition of 

γΦ(st) − Φ(s) to the reward has the effect of leading the agent “uphill” in utility.
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• Dynamic decision networks, or DDNs are factored representations

.

A dynamic decision network for a mobile robot with state variables for battery level, charging 
status, location, and velocity, and action variables for the left and right wheel motors and for 
charging.
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• The state St decomposed into four state variables
• Xt consists of the two-dimensional location on a grid plus the orientation;

• ሶ𝑿t is the rate of change of Xt;

• Chargingt is true when the robot is plugged in to a power source;
• Batteryt is the battery level, which we model as an integer in the range 0, …, 5.

• The state space for the MDP is the Cartesian product of the ranges of these four 

variables. 

• The action is now a set At  Unplug, which has three values (plug, unplug, and no p); 

LeftWheel for the power sent to the left wheel; and RightWheel for the power sent to 

the right wheel.

• The overall transition model is the conditional distribution P(Xt +1|Xt, At), computed 
as a product of conditional probabilities from the DDN
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a) The game of Tetris. The T-shaped piece at the top center can be dropped in any orientation and in any 
horizontal position. If a row is completed, that row disappears and the rows above it move down, and 
the agent receives one point. The next piece (here, the L-shaped piece at top right) becomes the 
current piece, and a new next piece appears, chosen at random from the seven piece types. The game 
ends if the board fills up to the top. 

b) The DDN for the Tetris MDP.
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Value Iteration
• The Bellman equation is the basis of the value iteration
• If there are n possible states, then there are n Bellman equations,

• The n equations contain n unknowns—the utilities of the states. 

• The equations are nonlinear, because the “max” operator is not a linear 
operator.

• start with arbitrary initial values for the utilities, calculate the right-hand side 
of the equation, and plug it into the left-hand side—thereby updating the 
utility of each state from the utilities of its neighbors. 

• Repeat this until reach an equilibrium.
• The iteration step, called a Bellman update, looks like this

• update is assumed to be applied simultaneously to all the states at each 
iteration
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The value iteration algorithm for calculating utilities of states.

Algorithms for MDPs (Value Iteration)
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Value Iteration applied to 4 x 3 world

(a) Graph showing the evolution of the utilities of selected states using value 

iteration.

(b)  The number of value iterations required to guarantee an error of at most E 
= c Rmax

 for different values of c, as a function of the discount factor γ.
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Policy Iteration
• Alternates the following two steps beginning from some initial policy π0:

• Policy evaluation: given a policy πi, calculate Ui =U πi , the utility of 

each state if πi were to be executed.

• Policy improvement: Calculate a new MEU policy πi+1, using one-step 

look-ahead based on Ui

• The algorithm terminates when the policy improvement step yields no change 

in the utilities.’

• Action in each state is fixed by the policy. At the ith iteration, the policy πi 
specifies the action πi(s) in state s. 

• Simplified version of the Bellman equation relating the utility of s (under πi) 

to the utilities of its neighbors:

• For large state spaces, time is prohibitive. Simplified Bellman update 
modified policy iteration
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The policy iteration algorithm for calculating an optimal policy.
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Linear programming (LP)
• General approach for formulating constrained optimization problems

• Minimize U(s) for all s subject to the inequalities for every state s and every 
action a.

• In practice, it turns out that LP solvers are seldom as efficient as dynamic 
programming for solving MDPs.

• linear programming is solvable in polynomial time polynomial however the 

number of states is often very large.
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Online Algorithms
• EXPECTIMAX algorithm builds a tree of alternating max and chance nodes
• An evaluation function can be applied to the nonterminal leaves of the tree, 

or they can be given a default value. 
• A decision can be extracted from the search tree by backing up the utility 

values from the leaves, taking an average at the chance nodes and taking the 
maximum at the decision nodes.

• The explored states actually constitute a sub-MDP of the original MDP, and 
this sub-MDP can be solved using any of the algorithms in this chapter.

• This approach is called real-time dynamic programming (RTDP)
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Part of an expectimax tree for the 43 MDP rooted at (3,2). The 
triangular nodes are max modes and the circular nodes are chance 
nodes.
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• In Las Vegas, a one-armed bandit is a slot machine. 

• An n-armed bandit has n levers. 

• Behind each lever is a fixed but unknown probability distribution of 
winnings.

• The gambler must choose which lever to play on each successive coin

• Tradeoff between exploitation of the current best action to obtain rewards 
and exploration of previously unknown states and actions to gain 
information

• Formal model for real problems important areas, such as 
• deciding which of n possible new treatments to try to cure a disease,
• which of n possible investments to put part of your savings into,
• which of n possible research projects to fund
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Bandit problems definitions

• “Each arm Mi is a Markov reward process or MRP, that is, an MDP 

with only one possible action ai. It has states Si, transition model Pi(s
t s, 

ai), and reward Ri(s, ai, s
t). The arm defines a distribution over 

sequences of rewards Ri,0, Ri,1, Ri,2, . . ., where each Ri,t is a random 

variable.”

• “The overall bandit problem is an MDP: the state space is given by the 
Cartesian product S = S1 Sn; the actions are a1, . . . , an; the transition 

model updates the state of whichever arm Mi is selected, according to its 

specific transition model, leaving the other arms unchanged; and the 

discount factor is γ.”

• The key property is that the arms are independent, only one arm can work 
at a time.
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(a) A simple deterministic bandit problem with two arms. The arms 

can be pulled in any order, and each yields the sequence of rewards 

shown. 

(b) A more general case of the bandit in (a), where the first arm gives 

an arbitrary sequence of rewards and the second arm gives a fixed 

reward λ.

© 2021 Pearson Education Ltd.



Bandit Problems

25

Computing the utility (total discounted reward) for each arm:

Starting with M and then switching to M after the fourth reward gives 
the sequence S = 0, 2, 0, 7.2, 1, 1, 1, . . ., for which

The strategy S that switches from M to M1 at the right time is better than 
either arm individually
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Optimal strategy is to run arm M up to time T and then switch to Mλ for 

the rest of time.

Gittins Index:

value describes the maximum obtainable utility per unit of discounted 
time.
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The Bernoulli bandit
• simplest and best-known instance of a bandit problem

• where each arm Mi produces a reward of 0 or 1 with a fixed but 

unknown probability µi.

• The state of arm Mi is defined by si and fi, the counts of successes (1s) 

and failures (0s) so far for that arm; 

• the transition probability predicts the next outcome to be 1 with 

probability (si)/(si + fi) and 0 with probability ( fi)/(si + fi). 

• The counts are initialized to 1 so that the initial probabilities are 1/2 

rather than 0 .
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The Bernoulli bandit

(a) States, rewards, and transition probabilities for the Bernoulli bandit. 
(b) Gittins indices for the states of the Bernoulli bandit process.
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• Partially observable MDPs (POMDPs)

• MDPs [the transition model P(st s, a), actions A(s), and reward function R(s, 
a, st)]

• POMDPs are MDPs with sensor model P(e|s).
• Obtain compact representations for large POMDPs by using dynamic decision 

networks
• We add sensor variables Et, assuming that the state variables Xt may not be 

directly observable. 

• Thus the sensor model is P(Et|Xt).

• Steps of decision cycle of a POMDP agent

• Given the current belief state b, execute the action a = π∗(b).
• Observe the percept e.

• Set the current belief state to FORWARD(b, a, e) and repeat.
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P(bt |b, a) and ρ(b, a) define an observable MDP on the space of belief 

states.
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A high-level sketch of the value iteration algorithm for POMDPs. The 

REMOVE-DOMINATED-PLANS step and MAX-DIFFERENCE test are typically 

implemented as linear programs.

Value iteration for POMDPs
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(a) Utility of two one-step plans as a function of the initial belief state b(B) for the two-state world, with the 
corresponding utility function shown in bold. (b) Utilities for 8 distinct two-step plans. (c) Utilities for four 
undominated two-step plans. (d) Utility function for optimal eight-step plans.
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Algorithms for Solving POMDPs

33

Online algorithms for POMDPs
• Starts with some prior belief state; 
• It chooses an action based on some deliberation process centered on its 

current belief state; 
• After acting, it receives an observation and updates its belief state using a 

filtering
• Algorithm; and the process repeats.

• Excpectimax algorithm (belief states rather than physical states as decision 
nodes)

• The chance nodes in the POMDP tree have branches labeled by possible 
observations and leading to the next belief state, with transition probabilities

• The combination of particle filtering and UCT applied to POMDPs goes under 
the name of partially observable Monte Carlo planning or POMCP.
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Part of an expectimax tree for the 43 POMDP with a uniform initial 
belief state. 
The belief states are depicted with shading proportional to the 
probability of being in each location.
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Sequential decision problems in stochastic environments, also called Markov 
decision processes, or MDPs, are defined by a transition model 

The solution of an MDP is a policy that associates a decision
with every state that the agent might reach.

The value iteration algorithm iteratively solves a set of equations
relating the utility of each state to those of its neighbors

Policy iteration alternates between calculating the utilities of states under the 
current

Partially observable MDPs, or POMDPs, are much more difficult to solve than are
MDPs.
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