
Adversarial Search Review

Artificial Intelligence

1. What is a zero-sum game?

Solution: A game in which the ”score” for one agent is the negative of the other agent’s, i.e., they
add to zero.

2. What is another,perhaps better, term for zero-sum? Why?

Solution: Equivalently, in a constant sum game the scores add to a constant value. For example,
in chess each player gets a score of 1 or 0 in the case of a win, or each player gets 1

2 in the case of a
draw. These scores always add to 1.

3. What is a ply?

Solution: One move by one player is called a ply. A ply for MAX plus the response ply for MIN
constitute a game move.

4. In the following 2-ply minimax game tree, what are the minimax values of nodes A, B, C, and D, and
which move is selected by MAX?

Move a1 is selected.

A3

B3 C2 D2

3 12 8 2 4 6 14 5 2

a1 a2 a3

b1 b2 b3 c1 c2 c3 d1 d2 d3

1



5. In the following game tree, what are the α and β values in the intervals and which branches would be
pruned from the tree with Alpha-Beta pruning?

Remember,

• α = the value of the best (i.e., highest-value) choice we have found so far at any choice point along
the path for MAX. Think: α = ”at least.”

• β = the value of the best (i.e., lowest-value) choice we have found so far at any choice point along
the path for MIN. Think: β = ”at most.”

At a MIN node, once we exapnd a child node that sets β to a value less than the highest α value for
a sibling node, we can stop expanding child nodes because they won’t change the choice taken at the
parent MAX node.

At a MAX node, once we exapnd a child node that sets α to a value greater than the lowest β value for
a sibling node, we can stop expanding child nodes because they won’t change the choice taken at the
parent MIN node.

A[3, 3]

B[3, 3] C[−∞, 2] D[2, 2]

3 12 8 2 4 6 14 5 2

a1 a2 a3

b1 b2 b3 c1 c2 c3 d1 d2 d3

6. In basic minimax search, the Minimax value function is defined by:

Minimax(s) =


Utility(s,MAX) if IsTerminal(s)

maxa∈Actions(s)Minimax(Result(s, a)) if ToMove(s) = MAX

mina∈Actions(s)Minimax(Result(s, a)) if ToMove(s) = MIN

How does the minimax algorithm and the minimax value function change when using a heuristic static
evaluation function?

Solution: We add a depth parameter, d, which limits the number of plies of the game tree generated
by the algorithm, and use this updated Minimax function:

HMinimax(s, d) =


Eval(s,MAX) if IsCutoff(s, d)

maxa∈Actions(s)HMinimax(Result(s, a), d+ 1) if ToMove(s) = MAX

mina∈Actions(s)HMinimax(Result(s, a), d+ 1) if ToMove(s) = MIN

7. In terminal states, what is the value of the Eval(s,MAX) function?

Solution: In terminal states, Eval(state, player) = Utility(state, player), which is defined by the
game rules.

Page 2



8. How does Monte-Carlo Tree Search differ from Heuristic Alph-Beta Search?

Solution: Instead of searching to a given depth and applying a heurstic evaluation function to the
resulting positions, we

• simulate complete games (from a given position) to terminal positions, and

• back-up the win/loss scores up the tree.

9. Which weaknesses of Heuristic Alph-Beta Search does MCTS seek to overcome?

Solution: Two major weaknesses of heuristic alpha-beta tree search:

• Can’t handle high branching factors. Go has a branching factor that starts at 361, which
means alpha–beta search would be limited to only 4 or 5 ply.

• Can’t always define a good static evaluation function. E.g., in Go material value is not a
strong indicator and most positions are in flux until the endgame.

10. Using the UCB1 upper confidence bound selection policy with a low C value, which path, a or b, would
MCTS expand?

50
100

74
100

3
4

a b

Solution: a

Page 3


